Deep Affinity Net: Instance Segmentation via Affinity
- URL: http://arxiv.org/abs/2003.06849v1
- Date: Sun, 15 Mar 2020 15:22:56 GMT
- Title: Deep Affinity Net: Instance Segmentation via Affinity
- Authors: Xingqian Xu, Mang Tik Chiu, Thomas S. Huang, Honghui Shi
- Abstract summary: Deep Affinity Net is an effective affinity-based approach accompanied with a new graph partitioning algorithm Cascade-GAEC.
It achieves the best single-shot result as well as the fastest running time among all affinity-based models.
It also outperforms the region-based method Mask R-CNN.
- Score: 48.498706304017674
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Most of the modern instance segmentation approaches fall into two categories:
region-based approaches in which object bounding boxes are detected first and
later used in cropping and segmenting instances; and keypoint-based approaches
in which individual instances are represented by a set of keypoints followed by
a dense pixel clustering around those keypoints. Despite the maturity of these
two paradigms, we would like to report an alternative affinity-based paradigm
where instances are segmented based on densely predicted affinities and graph
partitioning algorithms. Such affinity-based approaches indicate that
high-level graph features other than regions or keypoints can be directly
applied in the instance segmentation task. In this work, we propose Deep
Affinity Net, an effective affinity-based approach accompanied with a new graph
partitioning algorithm Cascade-GAEC. Without bells and whistles, our end-to-end
model results in 32.4% AP on Cityscapes val and 27.5% AP on test. It achieves
the best single-shot result as well as the fastest running time among all
affinity-based models. It also outperforms the region-based method Mask R-CNN.
Related papers
- ISBNet: a 3D Point Cloud Instance Segmentation Network with
Instance-aware Sampling and Box-aware Dynamic Convolution [14.88505076974645]
ISBNet is a novel method that represents instances as kernels and decodes instance masks via dynamic convolution.
We set new state-of-the-art results on ScanNetV2 (55.9), S3DIS (60.8), S3LS3D (49.2) in terms of AP and retains fast inference time (237ms per scene on ScanNetV2.
arXiv Detail & Related papers (2023-03-01T06:06:28Z) - PointInst3D: Segmenting 3D Instances by Points [136.7261709896713]
We propose a fully-convolutional 3D point cloud instance segmentation method that works in a per-point prediction fashion.
We find the key to its success is assigning a suitable target to each sampled point.
Our approach achieves promising results on both ScanNet and S3DIS benchmarks.
arXiv Detail & Related papers (2022-04-25T02:41:46Z) - Sparse Instance Activation for Real-Time Instance Segmentation [72.23597664935684]
We propose a conceptually novel, efficient, and fully convolutional framework for real-time instance segmentation.
SparseInst has extremely fast inference speed and achieves 40 FPS and 37.9 AP on the COCO benchmark.
arXiv Detail & Related papers (2022-03-24T03:15:39Z) - Hierarchical Aggregation for 3D Instance Segmentation [41.20244892803604]
We propose a clustering-based framework named HAIS, which makes full use of spatial relation of points and point sets.
It ranks 1st on the ScanNet v2 benchmark, achieving the highest 69.9% AP50 and surpassing previous state-of-the-art (SOTA) methods by a large margin.
arXiv Detail & Related papers (2021-08-05T03:34:34Z) - SOLO: A Simple Framework for Instance Segmentation [84.00519148562606]
"instance categories" assigns categories to each pixel within an instance according to the instance's location.
"SOLO" is a simple, direct, and fast framework for instance segmentation with strong performance.
Our approach achieves state-of-the-art results for instance segmentation in terms of both speed and accuracy.
arXiv Detail & Related papers (2021-06-30T09:56:54Z) - PointFlow: Flowing Semantics Through Points for Aerial Image
Segmentation [96.76882806139251]
We propose a point-wise affinity propagation module based on the Feature Pyramid Network (FPN) framework, named PointFlow.
Rather than dense affinity learning, a sparse affinity map is generated upon selected points between the adjacent features.
Experimental results on three different aerial segmentation datasets suggest that the proposed method is more effective and efficient than state-of-the-art general semantic segmentation methods.
arXiv Detail & Related papers (2021-03-11T09:42:32Z) - Differentiable Hierarchical Graph Grouping for Multi-Person Pose
Estimation [95.72606536493548]
Multi-person pose estimation is challenging because it localizes body keypoints for multiple persons simultaneously.
We propose a novel differentiable Hierarchical Graph Grouping (HGG) method to learn the graph grouping in bottom-up multi-person pose estimation task.
arXiv Detail & Related papers (2020-07-23T08:46:22Z) - Towards Bounding-Box Free Panoptic Segmentation [16.4548904544277]
We introduce a new Bounding-Box Free Network (BBFNet) for panoptic segmentation.
BBFNet predicts coarse watershed levels and uses them to detect large instance candidates where boundaries are well defined.
For smaller instances, whose boundaries are less reliable, BBFNet also predicts instance centers by means of Hough voting followed by mean-shift to reliably detect small objects.
arXiv Detail & Related papers (2020-02-18T16:34:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.