PointInst3D: Segmenting 3D Instances by Points
- URL: http://arxiv.org/abs/2204.11402v1
- Date: Mon, 25 Apr 2022 02:41:46 GMT
- Title: PointInst3D: Segmenting 3D Instances by Points
- Authors: Tong He and Chunhua Shen and Anton van den Hengel
- Abstract summary: We propose a fully-convolutional 3D point cloud instance segmentation method that works in a per-point prediction fashion.
We find the key to its success is assigning a suitable target to each sampled point.
Our approach achieves promising results on both ScanNet and S3DIS benchmarks.
- Score: 136.7261709896713
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The current state-of-the-art methods in 3D instance segmentation typically
involve a clustering step, despite the tendency towards heuristics, greedy
algorithms, and a lack of robustness to the changes in data statistics. In
contrast, we propose a fully-convolutional 3D point cloud instance segmentation
method that works in a per-point prediction fashion. In doing so it avoids the
challenges that clustering-based methods face: introducing dependencies among
different tasks of the model. We find the key to its success is assigning a
suitable target to each sampled point. Instead of the commonly used static or
distance-based assignment strategies, we propose to use an Optimal Transport
approach to optimally assign target masks to the sampled points according to
the dynamic matching costs. Our approach achieves promising results on both
ScanNet and S3DIS benchmarks. The proposed approach removes intertask
dependencies and thus represents a simpler and more flexible 3D instance
segmentation framework than other competing methods, while achieving improved
segmentation accuracy.
Related papers
- SAI3D: Segment Any Instance in 3D Scenes [68.57002591841034]
We introduce SAI3D, a novel zero-shot 3D instance segmentation approach.
Our method partitions a 3D scene into geometric primitives, which are then progressively merged into 3D instance segmentations.
Empirical evaluations on ScanNet, Matterport3D and the more challenging ScanNet++ datasets demonstrate the superiority of our approach.
arXiv Detail & Related papers (2023-12-17T09:05:47Z) - ISBNet: a 3D Point Cloud Instance Segmentation Network with
Instance-aware Sampling and Box-aware Dynamic Convolution [14.88505076974645]
ISBNet is a novel method that represents instances as kernels and decodes instance masks via dynamic convolution.
We set new state-of-the-art results on ScanNetV2 (55.9), S3DIS (60.8), S3LS3D (49.2) in terms of AP and retains fast inference time (237ms per scene on ScanNetV2.
arXiv Detail & Related papers (2023-03-01T06:06:28Z) - 3D-QueryIS: A Query-based Framework for 3D Instance Segmentation [74.6998931386331]
Previous methods for 3D instance segmentation often maintain inter-task dependencies and the tendency towards a lack of robustness.
We propose a novel query-based method, termed as 3D-QueryIS, which is detector-free, semantic segmentation-free, and cluster-free.
Our 3D-QueryIS is free from the accumulated errors caused by the inter-task dependencies.
arXiv Detail & Related papers (2022-11-17T07:04:53Z) - Collaborative Propagation on Multiple Instance Graphs for 3D Instance
Segmentation with Single-point Supervision [63.429704654271475]
We propose a novel weakly supervised method RWSeg that only requires labeling one object with one point.
With these sparse weak labels, we introduce a unified framework with two branches to propagate semantic and instance information.
Specifically, we propose a Cross-graph Competing Random Walks (CRW) algorithm that encourages competition among different instance graphs.
arXiv Detail & Related papers (2022-08-10T02:14:39Z) - MaskGroup: Hierarchical Point Grouping and Masking for 3D Instance
Segmentation [36.28586460186891]
This paper studies the 3D instance segmentation problem, which has a variety of real-world applications such as robotics and augmented reality.
We propose a novel framework to group and refine the 3D instances.
Our approach achieves a 66.4% mAP with the 0.5 IoU threshold on the ScanNetV2 test set, which is 1.9% higher than the state-of-the-art method.
arXiv Detail & Related papers (2022-03-28T11:22:58Z) - Dynamic Convolution for 3D Point Cloud Instance Segmentation [146.7971476424351]
We propose an approach to instance segmentation from 3D point clouds based on dynamic convolution.
We gather homogeneous points that have identical semantic categories and close votes for the geometric centroids.
The proposed approach is proposal-free, and instead exploits a convolution process that adapts to the spatial and semantic characteristics of each instance.
arXiv Detail & Related papers (2021-07-18T09:05:16Z) - DyCo3D: Robust Instance Segmentation of 3D Point Clouds through Dynamic
Convolution [136.7261709896713]
We propose a data-driven approach that generates the appropriate convolution kernels to apply in response to the nature of the instances.
The proposed method achieves promising results on both ScanetNetV2 and S3DIS.
It also improves inference speed by more than 25% over the current state-of-the-art.
arXiv Detail & Related papers (2020-11-26T14:56:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.