A time-symmetric formulation of quantum entanglement
- URL: http://arxiv.org/abs/2003.07183v3
- Date: Thu, 4 Feb 2021 03:03:56 GMT
- Title: A time-symmetric formulation of quantum entanglement
- Authors: Michael B. Heaney
- Abstract summary: I numerically simulate and compare the entanglement of two quanta using the conventional formulation of quantum mechanics.
The time-symmetric formulation reveals an experimentally testable discrepancy in the original quantum analysis of the Hanbury Brown-Twiss experiment.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: I numerically simulate and compare the entanglement of two quanta using the
conventional formulation of quantum mechanics and a time-symmetric formulation
that has no collapse postulate. The experimental predictions of the two
formulations are identical, but the entanglement predictions are significantly
different. The time-symmetric formulation reveals an experimentally testable
discrepancy in the original quantum analysis of the Hanbury Brown-Twiss
experiment, suggests solutions to some parts of the nonlocality and measurement
problems, fixes known time asymmetries in the conventional formulation, and
answers Bell's question "How do you convert an 'and' into an 'or'?'"
Related papers
- Polar Duality and Quasi-States: a Geometric Picture of Quantum Indeterminacy [0.0]
We introduce the notion of "quasi-states" which are related in a way that will be explained to the notion of "quantum blob"
Considering the symmetries of the quasi-states leads to the definition of the canonical group of a quasi-state, which allows to classify them.
arXiv Detail & Related papers (2024-07-09T09:00:14Z) - Measuring the Evolution of Entanglement in Compton Scattering [101.11630543545151]
The behavior of quantum entanglement during scattering is identical to the behavior of initially classically correlated photons up to a constant factor equal to two.
Our dedicated experiment with photons confirms these results and explains the "Puzzle of Decoherence" observed recently.
arXiv Detail & Related papers (2024-06-20T14:21:23Z) - Time and event symmetry in quantum mechanics [0.0]
We find that recent time symmetric interpretations of quantum mechanics fail to respect event symmetry.
We then use this model to resolve conceptual paradoxes with time symmetric quantum mechanics within an all-at-once', atemporal picture.
arXiv Detail & Related papers (2023-12-21T01:59:21Z) - Real-time dynamics of false vacuum decay [49.1574468325115]
We investigate false vacuum decay of a relativistic scalar field in the metastable minimum of an asymmetric double-well potential.
We employ the non-perturbative framework of the two-particle irreducible (2PI) quantum effective action at next-to-leading order in a large-N expansion.
arXiv Detail & Related papers (2023-10-06T12:44:48Z) - Can the double-slit experiment distinguish between quantum
interpretations? [0.0]
There are various predictions for joint distribution of particle detection events on a screen which are derived from different formulations and interpretations of the quantum theory.
Although the differences are typically small, our studies show that these predictions can be experimentally distinguished by an unconventional double-slit configuration.
This experiment would enrich our understanding of the foundations of quantum mechanics.
arXiv Detail & Related papers (2023-01-06T18:35:58Z) - Entanglement of annihilation photons [141.5628276096321]
We present the results of a new experimental study of the quantum entanglement of photon pairs produced in positron-electron annihilation at rest.
Despite numerous measurements, there is still no experimental proof of the entanglement of photons.
arXiv Detail & Related papers (2022-10-14T08:21:55Z) - Certified Quantumness via Single-Shot Temporal Measurements [0.0]
Bell-Kochen-Specker theorem states that a non-contextual hidden- variable theory cannot reproduce predictions of quantum mechanics.
Asher Peres gave a simple proof of quantum contextuality in a four-dimensional Hilbert space of two spin-1/2 particles.
We present a similar proof in time with a temporal version of the Peres-like argument.
arXiv Detail & Related papers (2022-06-06T12:42:32Z) - Events in quantum mechanics are maximally non-absolute [0.9176056742068814]
We prove that quantum correlations can be maximally non-absolute according to both quantifiers.
We show that chained Bell inequalities (and relaxations thereof) are also valid constraints for Wigner's experiment.
arXiv Detail & Related papers (2021-12-19T21:15:16Z) - Experimental verification of fluctuation relations with a quantum
computer [68.8204255655161]
We use a quantum processor to experimentally validate a number of theoretical results in non-equilibrium quantum thermodynamics.
Our experiments constitute the experimental basis for the understanding of the non-equilibrium energetics of quantum computation.
arXiv Detail & Related papers (2021-06-08T14:16:12Z) - Quantum indistinguishability through exchangeable desirable gambles [69.62715388742298]
Two particles are identical if all their intrinsic properties, such as spin and charge, are the same.
Quantum mechanics is seen as a normative and algorithmic theory guiding an agent to assess her subjective beliefs represented as (coherent) sets of gambles.
We show how sets of exchangeable observables (gambles) may be updated after a measurement and discuss the issue of defining entanglement for indistinguishable particle systems.
arXiv Detail & Related papers (2021-05-10T13:11:59Z) - Equivalence of approaches to relational quantum dynamics in relativistic
settings [68.8204255655161]
We show that the trinity' of relational quantum dynamics holds in relativistic settings per frequency superselection sector.
We ascribe the time according to the clock subsystem to a POVM which is covariant with respect to its (quadratic) Hamiltonian.
arXiv Detail & Related papers (2020-07-01T16:12:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.