Certified Quantumness via Single-Shot Temporal Measurements
- URL: http://arxiv.org/abs/2206.02581v3
- Date: Sat, 05 Oct 2024 16:33:33 GMT
- Title: Certified Quantumness via Single-Shot Temporal Measurements
- Authors: Md Manirul Ali, Sovik Roy,
- Abstract summary: Bell-Kochen-Specker theorem states that a non-contextual hidden- variable theory cannot reproduce predictions of quantum mechanics.
Asher Peres gave a simple proof of quantum contextuality in a four-dimensional Hilbert space of two spin-1/2 particles.
We present a similar proof in time with a temporal version of the Peres-like argument.
- Score: 0.0
- License:
- Abstract: Bell-Kochen-Specker theorem states that a non-contextual hidden-variable theory cannot completely reproduce the predictions of quantum mechanics. Asher Peres gave a remarkably simple proof of quantum contextuality in a four-dimensional Hilbert space of two spin-1/2 particles. Peres's argument is enormously simpler than that of Kochen and Specker. Peres contextuality demonstrates a logical contradiction between quantum mechanics and the noncontextual hidden variable models by showing an inconsistency when assigning noncontextual definite values to a certain set of quantum observables. In this work, we present a similar proof in time with a temporal version of the Peres-like argument. In analogy with the two-particle version of Peres's argument in the context of spin measurements at two different locations, we examine here single-particle spin measurements at two different times $t=t_1$ and $t=t_2$. We adopt three classical assumptions for time-separated measurements, which are demonstrated to conflict with quantum mechanical predictions. Consequently, we provide a non-probabilistic proof of certified quantumness in time, without relying on inequalities, demonstrating that our approach can certify the quantumness of a device through single-shot, time-separated measurements. Our results can be experimentally verified with the present quantum technology.
Related papers
- Quantum determinism and completeness restored by indistinguishability and long-time particle detection [0.0]
We argue that measurement data in quantum physics can be rigorously interpreted only as a result of a statistical, macroscopic process.
We show with the illustrative cases of the Schr"odinger cat and the Bell experiment that once the Born rule is abandoned on the level of a single particle, realism, locality and causality are restored.
arXiv Detail & Related papers (2024-09-22T18:15:24Z) - A computational test of quantum contextuality, and even simpler proofs of quantumness [43.25018099464869]
We show that an arbitrary contextuality game can be compiled into an operational "test of contextuality" involving a single quantum device.
Our work can be seen as using cryptography to enforce spatial separation within subsystems of a single quantum device.
arXiv Detail & Related papers (2024-05-10T19:30:23Z) - Simple Tests of Quantumness Also Certify Qubits [69.96668065491183]
A test of quantumness is a protocol that allows a classical verifier to certify (only) that a prover is not classical.
We show that tests of quantumness that follow a certain template, which captures recent proposals such as (Kalai et al., 2022) can in fact do much more.
Namely, the same protocols can be used for certifying a qubit, a building-block that stands at the heart of applications such as certifiable randomness and classical delegation of quantum computation.
arXiv Detail & Related papers (2023-03-02T14:18:17Z) - Can the double-slit experiment distinguish between quantum
interpretations? [0.0]
There are various predictions for joint distribution of particle detection events on a screen which are derived from different formulations and interpretations of the quantum theory.
Although the differences are typically small, our studies show that these predictions can be experimentally distinguished by an unconventional double-slit configuration.
This experiment would enrich our understanding of the foundations of quantum mechanics.
arXiv Detail & Related papers (2023-01-06T18:35:58Z) - Depth-efficient proofs of quantumness [77.34726150561087]
A proof of quantumness is a type of challenge-response protocol in which a classical verifier can efficiently certify quantum advantage of an untrusted prover.
In this paper, we give two proof of quantumness constructions in which the prover need only perform constant-depth quantum circuits.
arXiv Detail & Related papers (2021-07-05T17:45:41Z) - Quantum indistinguishability through exchangeable desirable gambles [69.62715388742298]
Two particles are identical if all their intrinsic properties, such as spin and charge, are the same.
Quantum mechanics is seen as a normative and algorithmic theory guiding an agent to assess her subjective beliefs represented as (coherent) sets of gambles.
We show how sets of exchangeable observables (gambles) may be updated after a measurement and discuss the issue of defining entanglement for indistinguishable particle systems.
arXiv Detail & Related papers (2021-05-10T13:11:59Z) - Quantum erasing the memory of Wigner's friend [0.0]
Wigner's friend paradox concerns one of the most puzzling problems of quantum mechanics.
At the core of the paradox lies the description of an observer and the object it measures as a closed system obeying the Schr"odinger equation.
We argue that the three apparently incompatible properties used to question the consistency of quantum mechanics correspond to two logically distinct contexts.
arXiv Detail & Related papers (2020-09-21T14:24:58Z) - Quantum time dilation: A new test of relativistic quantum theory [91.3755431537592]
A novel quantum time dilation effect is shown to arise when a clock moves in a quantum superposition of two relativistic velocities.
This effect is argued to be measurable using existing atomic interferometry techniques, potentially offering a new test of relativistic quantum theory.
arXiv Detail & Related papers (2020-04-22T19:26:53Z) - Entropic Uncertainty Relations and the Quantum-to-Classical transition [77.34726150561087]
We aim to shed some light on the quantum-to-classical transition as seen through the analysis of uncertainty relations.
We employ entropic uncertainty relations to show that it is only by the inclusion of imprecision in our model of macroscopic measurements that we can prepare a system with two simultaneously well-defined quantities.
arXiv Detail & Related papers (2020-03-04T14:01:17Z) - Quantum Mechanical description of Bell's experiment assumes Locality [91.3755431537592]
Bell's experiment description assumes the (Quantum Mechanics-language equivalent of the classical) condition of Locality.
This result is complementary to a recently published one demonstrating that non-Locality is necessary to describe said experiment.
It is concluded that, within the framework of Quantum Mechanics, there is absolutely no reason to believe in the existence of non-Local effects.
arXiv Detail & Related papers (2020-02-27T15:04:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.