Context-Transformer: Tackling Object Confusion for Few-Shot Detection
- URL: http://arxiv.org/abs/2003.07304v1
- Date: Mon, 16 Mar 2020 16:17:11 GMT
- Title: Context-Transformer: Tackling Object Confusion for Few-Shot Detection
- Authors: Ze Yang (1), Yali Wang (1), Xianyu Chen (1), Jianzhuang Liu (2), Yu
Qiao (1 and 3) ((1) ShenZhen Key Lab of Computer Vision and Pattern
Recognition, SIAT-SenseTime Joint Lab, Shenzhen Institutes of Advanced
Technology, Chinese Academy of Sciences, (2) Huawei Noah's Ark Lab, (3) SIAT
Branch, Shenzhen Institute of Artificial Intelligence and Robotics for
Society)
- Abstract summary: We propose a novel Context-Transformer within a concise deep transfer framework.
Context-Transformer can effectively leverage source-domain object knowledge as guidance.
It can adaptively integrate these relational clues to enhance the discriminative power of detector.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Few-shot object detection is a challenging but realistic scenario, where only
a few annotated training images are available for training detectors. A popular
approach to handle this problem is transfer learning, i.e., fine-tuning a
detector pretrained on a source-domain benchmark. However, such transferred
detector often fails to recognize new objects in the target domain, due to low
data diversity of training samples. To tackle this problem, we propose a novel
Context-Transformer within a concise deep transfer framework. Specifically,
Context-Transformer can effectively leverage source-domain object knowledge as
guidance, and automatically exploit contexts from only a few training images in
the target domain. Subsequently, it can adaptively integrate these relational
clues to enhance the discriminative power of detector, in order to reduce
object confusion in few-shot scenarios. Moreover, Context-Transformer is
flexibly embedded in the popular SSD-style detectors, which makes it a
plug-and-play module for end-to-end few-shot learning. Finally, we evaluate
Context-Transformer on the challenging settings of few-shot detection and
incremental few-shot detection. The experimental results show that, our
framework outperforms the recent state-of-the-art approaches.
Related papers
- Improving Object Detection via Local-global Contrastive Learning [27.660633883387753]
We present a novel image-to-image translation method that specifically targets cross-domain object detection.
We learn to represent objects by contrasting local-global information.
This affords investigation of an under-explored challenge: obtaining performant detection, under domain shifts.
arXiv Detail & Related papers (2024-10-07T14:18:32Z) - Few-Shot Object Detection with Sparse Context Transformers [37.106378859592965]
Few-shot detection is a major task in pattern recognition which seeks to localize objects using models trained with few labeled data.
We propose a novel sparse context transformer (SCT) that effectively leverages object knowledge in the source domain, and automatically learns a sparse context from only few training images in the target domain.
We evaluate the proposed method on two challenging few-shot object detection benchmarks, and empirical results show that the proposed method obtains competitive performance compared to the related state-of-the-art.
arXiv Detail & Related papers (2024-02-14T17:10:01Z) - Focusing on what to decode and what to train: Efficient Training with
HOI Split Decoders and Specific Target Guided DeNoising [17.268302302974607]
Recent one-stage transformer-based methods achieve notable gains in the Human-object Interaction Detection (HOI) task by leveraging the detection of DETR.
We propose a novel one-stage framework (SOV) which consists of a subject decoder, an object decoder, and a verb decoder.
We propose a novel Specific Target Guided (STG) DeNoising training strategy, which leverages learnable object and verb label embeddings to guide the training and accelerate the training convergence.
arXiv Detail & Related papers (2023-07-05T13:42:31Z) - Scaling Novel Object Detection with Weakly Supervised Detection
Transformers [21.219817483091166]
We propose the Weakly Supervised Detection Transformer, which enables efficient knowledge transfer from a large-scale pretraining dataset to WSOD finetuning.
Our experiments show that our approach outperforms previous state-of-the-art models on large-scale novel object detection datasets.
arXiv Detail & Related papers (2022-07-11T21:45:54Z) - Incremental-DETR: Incremental Few-Shot Object Detection via
Self-Supervised Learning [60.64535309016623]
We propose the Incremental-DETR that does incremental few-shot object detection via fine-tuning and self-supervised learning on the DETR object detector.
To alleviate severe over-fitting with few novel class data, we first fine-tune the class-specific components of DETR with self-supervision.
We further introduce a incremental few-shot fine-tuning strategy with knowledge distillation on the class-specific components of DETR to encourage the network in detecting novel classes without catastrophic forgetting.
arXiv Detail & Related papers (2022-05-09T05:08:08Z) - Context-Aware Transfer Attacks for Object Detection [51.65308857232767]
We present a new approach to generate context-aware attacks for object detectors.
We show that by using co-occurrence of objects and their relative locations and sizes as context information, we can successfully generate targeted mis-categorization attacks.
arXiv Detail & Related papers (2021-12-06T18:26:39Z) - Plug-and-Play Few-shot Object Detection with Meta Strategy and Explicit
Localization Inference [78.41932738265345]
This paper proposes a plug detector that can accurately detect the objects of novel categories without fine-tuning process.
We introduce two explicit inferences into the localization process to reduce its dependence on annotated data.
It shows a significant lead in both efficiency, precision, and recall under varied evaluation protocols.
arXiv Detail & Related papers (2021-10-26T03:09:57Z) - Discovery-and-Selection: Towards Optimal Multiple Instance Learning for
Weakly Supervised Object Detection [86.86602297364826]
We propose a discoveryand-selection approach fused with multiple instance learning (DS-MIL)
Our proposed DS-MIL approach can consistently improve the baselines, reporting state-of-the-art performance.
arXiv Detail & Related papers (2021-10-18T07:06:57Z) - Instance Localization for Self-supervised Detection Pretraining [68.24102560821623]
We propose a new self-supervised pretext task, called instance localization.
We show that integration of bounding boxes into pretraining promotes better task alignment and architecture alignment for transfer learning.
Experimental results demonstrate that our approach yields state-of-the-art transfer learning results for object detection.
arXiv Detail & Related papers (2021-02-16T17:58:57Z) - Progressive Object Transfer Detection [84.48927705173494]
We propose a novel Progressive Object Transfer Detection (POTD) framework.
First, POTD can leverage various object supervision of different domains effectively into a progressive detection procedure.
Second, POTD consists of two delicate transfer stages, i.e., Low-Shot Transfer Detection (LSTD), and Weakly-Supervised Transfer Detection (WSTD)
arXiv Detail & Related papers (2020-02-12T00:16:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.