Scaling Novel Object Detection with Weakly Supervised Detection
Transformers
- URL: http://arxiv.org/abs/2207.05205v3
- Date: Thu, 25 May 2023 19:11:28 GMT
- Title: Scaling Novel Object Detection with Weakly Supervised Detection
Transformers
- Authors: Tyler LaBonte, Yale Song, Xin Wang, Vibhav Vineet, Neel Joshi
- Abstract summary: We propose the Weakly Supervised Detection Transformer, which enables efficient knowledge transfer from a large-scale pretraining dataset to WSOD finetuning.
Our experiments show that our approach outperforms previous state-of-the-art models on large-scale novel object detection datasets.
- Score: 21.219817483091166
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A critical object detection task is finetuning an existing model to detect
novel objects, but the standard workflow requires bounding box annotations
which are time-consuming and expensive to collect. Weakly supervised object
detection (WSOD) offers an appealing alternative, where object detectors can be
trained using image-level labels. However, the practical application of current
WSOD models is limited, as they only operate at small data scales and require
multiple rounds of training and refinement. To address this, we propose the
Weakly Supervised Detection Transformer, which enables efficient knowledge
transfer from a large-scale pretraining dataset to WSOD finetuning on hundreds
of novel objects. Additionally, we leverage pretrained knowledge to improve the
multiple instance learning (MIL) framework often used in WSOD methods. Our
experiments show that our approach outperforms previous state-of-the-art models
on large-scale novel object detection datasets, and our scaling study reveals
that class quantity is more important than image quantity for WSOD pretraining.
The code is available at https://github.com/tmlabonte/weakly-supervised-DETR.
Related papers
- Exploiting Unlabeled Data with Multiple Expert Teachers for Open Vocabulary Aerial Object Detection and Its Orientation Adaptation [58.37525311718006]
We put forth a novel formulation of the aerial object detection problem, namely open-vocabulary aerial object detection (OVAD)
We propose CastDet, a CLIP-activated student-teacher detection framework that serves as the first OVAD detector specifically designed for the challenging aerial scenario.
Our framework integrates a robust localization teacher along with several box selection strategies to generate high-quality proposals for novel objects.
arXiv Detail & Related papers (2024-11-04T12:59:13Z) - Scale-Invariant Feature Disentanglement via Adversarial Learning for UAV-based Object Detection [18.11107031800982]
We propose to improve single-stage inference accuracy through learning scale-invariant features.
We apply our approach to three state-of-the-art lightweight detection frameworks on three benchmark datasets.
arXiv Detail & Related papers (2024-05-24T11:40:22Z) - Improved Region Proposal Network for Enhanced Few-Shot Object Detection [23.871860648919593]
Few-shot object detection (FSOD) methods have emerged as a solution to the limitations of classic object detection approaches.
We develop a semi-supervised algorithm to detect and then utilize unlabeled novel objects as positive samples during the FSOD training stage.
Our improved hierarchical sampling strategy for the region proposal network (RPN) also boosts the perception of the object detection model for large objects.
arXiv Detail & Related papers (2023-08-15T02:35:59Z) - Identification of Novel Classes for Improving Few-Shot Object Detection [12.013345715187285]
Few-shot object detection (FSOD) methods offer a remedy by realizing robust object detection using only a few training samples per class.
We develop a semi-supervised algorithm to detect and then utilize unlabeled novel objects as positive samples during training to improve FSOD performance.
Our experimental results indicate that our method is effective and outperforms the existing state-of-the-art (SOTA) FSOD methods.
arXiv Detail & Related papers (2023-03-18T14:12:52Z) - Generalized Few-Shot 3D Object Detection of LiDAR Point Cloud for
Autonomous Driving [91.39625612027386]
We propose a novel task, called generalized few-shot 3D object detection, where we have a large amount of training data for common (base) objects, but only a few data for rare (novel) classes.
Specifically, we analyze in-depth differences between images and point clouds, and then present a practical principle for the few-shot setting in the 3D LiDAR dataset.
To solve this task, we propose an incremental fine-tuning method to extend existing 3D detection models to recognize both common and rare objects.
arXiv Detail & Related papers (2023-02-08T07:11:36Z) - Incremental-DETR: Incremental Few-Shot Object Detection via
Self-Supervised Learning [60.64535309016623]
We propose the Incremental-DETR that does incremental few-shot object detection via fine-tuning and self-supervised learning on the DETR object detector.
To alleviate severe over-fitting with few novel class data, we first fine-tune the class-specific components of DETR with self-supervision.
We further introduce a incremental few-shot fine-tuning strategy with knowledge distillation on the class-specific components of DETR to encourage the network in detecting novel classes without catastrophic forgetting.
arXiv Detail & Related papers (2022-05-09T05:08:08Z) - Discovery-and-Selection: Towards Optimal Multiple Instance Learning for
Weakly Supervised Object Detection [86.86602297364826]
We propose a discoveryand-selection approach fused with multiple instance learning (DS-MIL)
Our proposed DS-MIL approach can consistently improve the baselines, reporting state-of-the-art performance.
arXiv Detail & Related papers (2021-10-18T07:06:57Z) - Few-shot Weakly-Supervised Object Detection via Directional Statistics [55.97230224399744]
We propose a probabilistic multiple instance learning approach for few-shot Common Object Localization (COL) and few-shot Weakly Supervised Object Detection (WSOD)
Our model simultaneously learns the distribution of the novel objects and localizes them via expectation-maximization steps.
Our experiments show that the proposed method, despite being simple, outperforms strong baselines in few-shot COL and WSOD, as well as large-scale WSOD tasks.
arXiv Detail & Related papers (2021-03-25T22:34:16Z) - Incremental Few-Shot Object Detection [96.02543873402813]
OpeN-ended Centre nEt is a detector for incrementally learning to detect class objects with few examples.
ONCE fully respects the incremental learning paradigm, with novel class registration requiring only a single forward pass of few-shot training samples.
arXiv Detail & Related papers (2020-03-10T12:56:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.