Task-Independent Spiking Central Pattern Generator: A Learning-Based
Approach
- URL: http://arxiv.org/abs/2003.07477v1
- Date: Tue, 17 Mar 2020 00:01:38 GMT
- Title: Task-Independent Spiking Central Pattern Generator: A Learning-Based
Approach
- Authors: Elie Aljalbout and Florian Walter and Florian R\"ohrbein and Alois
Knoll
- Abstract summary: Central pattern generators are neural networks that are thought to be responsible for locomotion in humans and some animal species.
This paper introduces a new general framework for building central pattern generators that are task-independent, biologically plausible, and rely on learning methods.
The results are very promising as the used robot was able to perform stable walking at different speeds and to change speed within the same gait cycle.
- Score: 2.709804256642196
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Legged locomotion is a challenging task in the field of robotics but a rather
simple one in nature. This motivates the use of biological methodologies as
solutions to this problem. Central pattern generators are neural networks that
are thought to be responsible for locomotion in humans and some animal species.
As for robotics, many attempts were made to reproduce such systems and use them
for a similar goal. One interesting design model is based on spiking neural
networks. This model is the main focus of this work, as its contribution is not
limited to engineering but also applicable to neuroscience. This paper
introduces a new general framework for building central pattern generators that
are task-independent, biologically plausible, and rely on learning methods. The
abilities and properties of the presented approach are not only evaluated in
simulation but also in a robotic experiment. The results are very promising as
the used robot was able to perform stable walking at different speeds and to
change speed within the same gait cycle.
Related papers
- Astrocyte Regulated Neuromorphic Central Pattern Generator Control of
Legged Robotic Locomotion [3.7814142008074954]
This paper introduces an astrocyte regulated Spiking Neural Network (SNN)-based CPG for learning locomotion gait through Reward-Modulated STDP for quadruped robots.
The SNN-based CPG is simulated on a multi-object physics simulation platform resulting in the emergence of a trotting gait while running the robot on flat ground.
$23.3times$ computational power savings is observed in comparison to a state-of-the-art reinforcement learning based robot control algorithm.
arXiv Detail & Related papers (2023-12-25T20:33:16Z) - Teach Me How to Learn: A Perspective Review towards User-centered
Neuro-symbolic Learning for Robotic Surgical Systems [3.5672486441844553]
Recent advances in machine learning allowed robots to identify objects on a perceptual nonsymbolic level.
An alternative solution is to teach a robot on both perceptual nonsymbolic and conceptual symbolic levels.
This work proposes a concept for this user-centered hybrid learning paradigm that focuses on robotic surgical situations.
arXiv Detail & Related papers (2023-07-07T21:58:28Z) - Robot Learning with Sensorimotor Pre-training [98.7755895548928]
We present a self-supervised sensorimotor pre-training approach for robotics.
Our model, called RPT, is a Transformer that operates on sequences of sensorimotor tokens.
We find that sensorimotor pre-training consistently outperforms training from scratch, has favorable scaling properties, and enables transfer across different tasks, environments, and robots.
arXiv Detail & Related papers (2023-06-16T17:58:10Z) - Self-Improving Robots: End-to-End Autonomous Visuomotor Reinforcement
Learning [54.636562516974884]
In imitation and reinforcement learning, the cost of human supervision limits the amount of data that robots can be trained on.
In this work, we propose MEDAL++, a novel design for self-improving robotic systems.
The robot autonomously practices the task by learning to both do and undo the task, simultaneously inferring the reward function from the demonstrations.
arXiv Detail & Related papers (2023-03-02T18:51:38Z) - Co-evolving morphology and control of soft robots using a single genome [0.0]
We present a new method to co-evolve morphology and control of robots.
Our method derives both the "brain" and the "body" of an agent from a single genome and develops them together.
We evaluate the presented methods on four tasks and observe that even if the search space was larger, having a single genome makes the evolution process converge faster.
arXiv Detail & Related papers (2022-12-22T07:34:31Z) - REvolveR: Continuous Evolutionary Models for Robot-to-robot Policy
Transfer [57.045140028275036]
We consider the problem of transferring a policy across two different robots with significantly different parameters such as kinematics and morphology.
Existing approaches that train a new policy by matching the action or state transition distribution, including imitation learning methods, fail due to optimal action and/or state distribution being mismatched in different robots.
We propose a novel method named $REvolveR$ of using continuous evolutionary models for robotic policy transfer implemented in a physics simulator.
arXiv Detail & Related papers (2022-02-10T18:50:25Z) - Minimizing Energy Consumption Leads to the Emergence of Gaits in Legged
Robots [71.61319876928009]
We show that learning to minimize energy consumption plays a key role in the emergence of natural locomotion gaits at different speeds in real quadruped robots.
The emergent gaits are structured in ideal terrains and look similar to that of horses and sheep.
The same approach leads to unstructured gaits in rough terrains which is consistent with the findings in animal motor control.
arXiv Detail & Related papers (2021-10-25T17:59:58Z) - Neuromorphic adaptive spiking CPG towards bio-inspired locomotion of
legged robots [58.720142291102135]
Spiking Central Pattern Generator generates different locomotion patterns driven by an external stimulus.
The locomotion of the end robotic platform (any-legged robot) can be adapted to the terrain by using any sensor as input.
arXiv Detail & Related papers (2021-01-24T12:44:38Z) - Control for Multifunctionality: Bioinspired Control Based on Feeding in
Aplysia californica [0.3277163122167433]
We develop a hybrid Boolean model framework capable of modeling neural bursting activity and simple biomechanics at speeds faster than real time.
We present a multifunctional model of Aplysia californica feeding that qualitatively reproduces three key feeding behaviors.
We demonstrate that the model can be used for formulating testable hypotheses and discuss the implications of this approach for robotic control and neuroscience.
arXiv Detail & Related papers (2020-08-11T19:26:50Z) - A robot that counts like a child: a developmental model of counting and
pointing [69.26619423111092]
A novel neuro-robotics model capable of counting real items is introduced.
The model allows us to investigate the interaction between embodiment and numerical cognition.
The trained model is able to count a set of items and at the same time points to them.
arXiv Detail & Related papers (2020-08-05T21:06:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.