論文の概要: Energy-Based Processes for Exchangeable Data
- arxiv url: http://arxiv.org/abs/2003.07521v2
- Date: Wed, 8 Jul 2020 15:54:29 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-22 20:38:17.148508
- Title: Energy-Based Processes for Exchangeable Data
- Title(参考訳): 交換可能なデータのためのエネルギーベースプロセス
- Authors: Mengjiao Yang, Bo Dai, Hanjun Dai, Dale Schuurmans
- Abstract要約: エネルギーベースモデルを交換可能なデータに拡張するために、エネルギーベースプロセス(EBP)を導入する。
EBPの鍵となる利点は、集合上のより柔軟な分布を、その濃度を制限することなく表現できることである。
本研究では,多種多様なタスクにおける最先端性能を実演する電子掲示板の効率的な訓練手順を開発する。
- 参考スコア(独自算出の注目度): 109.04978766553612
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently there has been growing interest in modeling sets with
exchangeability such as point clouds. A shortcoming of current approaches is
that they restrict the cardinality of the sets considered or can only express
limited forms of distribution over unobserved data. To overcome these
limitations, we introduce Energy-Based Processes (EBPs), which extend energy
based models to exchangeable data while allowing neural network
parameterizations of the energy function. A key advantage of these models is
the ability to express more flexible distributions over sets without
restricting their cardinality. We develop an efficient training procedure for
EBPs that demonstrates state-of-the-art performance on a variety of tasks such
as point cloud generation, classification, denoising, and image completion.
- Abstract(参考訳): 近年,点雲などの交換可能性を持つ集合のモデリングへの関心が高まっている。
現在のアプローチの欠点は、考慮される集合の濃度を制限するか、観測されていないデータ上の制限された形式の分布しか表現できないことである。
これらの制限を克服するために、エネルギーベースのモデルから交換可能なデータまで拡張し、エネルギー関数のニューラルネットワークパラメータ化を可能にするEnergy-Based Processs (EBP)を導入する。
これらのモデルの重要な利点は、集合上のより柔軟な分布を、その濃度を制限することなく表現できることである。
我々は,ポイントクラウド生成,分類,デノイジング,画像補完など,さまざまなタスクにおける最先端のパフォーマンスを示す,ebpsの効率的なトレーニング手順を開発した。
関連論文リスト
- Diffusion-Based Neural Network Weights Generation [80.89706112736353]
D2NWGは拡散に基づくニューラルネットワーク重み生成技術であり、転送学習のために高性能な重みを効率よく生成する。
本稿では,ニューラルネットワーク重み生成のための遅延拡散パラダイムを再放送するために,生成的ハイパー表現学習を拡張した。
我々のアプローチは大規模言語モデル(LLM)のような大規模アーキテクチャにスケーラブルであり、現在のパラメータ生成技術の限界を克服しています。
論文 参考訳(メタデータ) (2024-02-28T08:34:23Z) - CoCoGen: Physically-Consistent and Conditioned Score-based Generative Models for Forward and Inverse Problems [1.0923877073891446]
この研究は生成モデルの到達範囲を物理的問題領域に拡張する。
基礎となるPDEとの整合性を促進するための効率的なアプローチを提案する。
各種物理課題におけるスコアベース生成モデルの可能性と汎用性を示す。
論文 参考訳(メタデータ) (2023-12-16T19:56:10Z) - Generative Marginalization Models [21.971818180264943]
境界化モデル(英: marginalization model、MAM)は、高次元離散データのための新しい生成モデルである。
それらは、すべての誘導された限界分布を明示的にモデル化することによって、スケーラブルで柔軟な生成モデリングを提供する。
エネルギーベースのトレーニングタスクでは、MAMは従来の方法のスケールを超える高次元問題の任意の順序生成モデリングを可能にする。
論文 参考訳(メタデータ) (2023-10-19T17:14:29Z) - Energy Discrepancies: A Score-Independent Loss for Energy-Based Models [20.250792836049882]
本稿では,スコアの計算や高価なマルコフ連鎖モンテカルロの計算に頼らない新しい損失関数であるEnergy Discrepancy (ED)を提案する。
EDは明示的なスコアマッチングと負のログ類似損失に異なる限界でアプローチし,両者を効果的に補間することを示した。
論文 参考訳(メタデータ) (2023-07-12T19:51:49Z) - On Feature Diversity in Energy-based Models [98.78384185493624]
エネルギーベースモデル(EBM)は通常、異なる特徴の組み合わせを学習し、入力構成ごとにエネルギーマッピングを生成する内部モデルによって構成される。
EBMのほぼ正しい(PAC)理論を拡張し,EBMの性能に及ぼす冗長性低減の影響を解析した。
論文 参考訳(メタデータ) (2023-06-02T12:30:42Z) - Your Autoregressive Generative Model Can be Better If You Treat It as an
Energy-Based One [83.5162421521224]
本稿では,自己回帰生成モデルの学習のための独自のE-ARM法を提案する。
E-ARMは、よく設計されたエネルギーベースの学習目標を活用する。
我々は、E-ARMを効率的に訓練でき、露光バイアス問題を緩和できることを示した。
論文 参考訳(メタデータ) (2022-06-26T10:58:41Z) - Closed-form Continuous-Depth Models [99.40335716948101]
連続深度ニューラルモデルは高度な数値微分方程式解法に依存している。
我々は,CfCネットワークと呼ばれる,記述が簡単で,少なくとも1桁高速な新しいモデル群を提示する。
論文 参考訳(メタデータ) (2021-06-25T22:08:51Z) - On Energy-Based Models with Overparametrized Shallow Neural Networks [44.74000986284978]
エネルギーベースモデル(EBM)は、ジェネレーションモデリングの強力なフレームワークです。
この研究では、浅いニューラルネットワークに焦点を当てます。
我々は、いわゆる「アクティブ」体制で訓練されたモデルが、関連する「怠慢」またはカーネル体制に対して統計的に有利であることを示す。
論文 参考訳(メタデータ) (2021-04-15T15:34:58Z) - ICE-BeeM: Identifiable Conditional Energy-Based Deep Models Based on
Nonlinear ICA [11.919315372249802]
確率モデルの同定可能性理論を考察する。
我々は,独立に修飾されたコンポーネント分析の枠組みにおけるコンポーネントの推定に,我々のモデルを利用できることを示す。
論文 参考訳(メタデータ) (2020-02-26T14:43:30Z) - Targeted free energy estimation via learned mappings [66.20146549150475]
自由エネルギー摂動 (FEP) は60年以上前にズワンツィヒによって自由エネルギー差を推定する方法として提案された。
FEPは、分布間の十分な重複の必要性という厳しい制限に悩まされている。
目標自由エネルギー摂動(Targeted Free Energy Perturbation)と呼ばれるこの問題を緩和するための1つの戦略は、オーバーラップを増やすために構成空間の高次元マッピングを使用する。
論文 参考訳(メタデータ) (2020-02-12T11:10:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。