Efficient Bitwidth Search for Practical Mixed Precision Neural Network
- URL: http://arxiv.org/abs/2003.07577v1
- Date: Tue, 17 Mar 2020 08:27:48 GMT
- Title: Efficient Bitwidth Search for Practical Mixed Precision Neural Network
- Authors: Yuhang Li, Wei Wang, Haoli Bai, Ruihao Gong, Xin Dong, and Fengwei Yu
- Abstract summary: Network quantization has rapidly become one of the most widely used methods to compress and accelerate deep neural networks.
Recent efforts propose to quantize weights and activations from different layers with different precision to improve the overall performance.
It is challenging to find the optimal bitwidth (i.e., precision) for weights and activations of each layer efficiently.
It is yet unclear how to perform convolution for weights and activations of different precision efficiently on generic hardware platforms.
- Score: 33.80117489791902
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Network quantization has rapidly become one of the most widely used methods
to compress and accelerate deep neural networks. Recent efforts propose to
quantize weights and activations from different layers with different precision
to improve the overall performance. However, it is challenging to find the
optimal bitwidth (i.e., precision) for weights and activations of each layer
efficiently. Meanwhile, it is yet unclear how to perform convolution for
weights and activations of different precision efficiently on generic hardware
platforms. To resolve these two issues, in this paper, we first propose an
Efficient Bitwidth Search (EBS) algorithm, which reuses the meta weights for
different quantization bitwidth and thus the strength for each candidate
precision can be optimized directly w.r.t the objective without superfluous
copies, reducing both the memory and computational cost significantly. Second,
we propose a binary decomposition algorithm that converts weights and
activations of different precision into binary matrices to make the mixed
precision convolution efficient and practical. Experiment results on CIFAR10
and ImageNet datasets demonstrate our mixed precision QNN outperforms the
handcrafted uniform bitwidth counterparts and other mixed precision techniques.
Related papers
- Neural Network Compression using Binarization and Few Full-Precision
Weights [7.206962876422061]
Automatic Prune Binarization (APB) is a novel compression technique combining quantization with pruning.
APB enhances the representational capability of binary networks using a few full-precision weights.
APB delivers better accuracy/memory trade-off compared to state-of-the-art methods.
arXiv Detail & Related papers (2023-06-15T08:52:00Z) - Compacting Binary Neural Networks by Sparse Kernel Selection [58.84313343190488]
This paper is motivated by a previously revealed phenomenon that the binary kernels in successful BNNs are nearly power-law distributed.
We develop the Permutation Straight-Through Estimator (PSTE) that is able to not only optimize the selection process end-to-end but also maintain the non-repetitive occupancy of selected codewords.
Experiments verify that our method reduces both the model size and bit-wise computational costs, and achieves accuracy improvements compared with state-of-the-art BNNs under comparable budgets.
arXiv Detail & Related papers (2023-03-25T13:53:02Z) - A Practical Mixed Precision Algorithm for Post-Training Quantization [15.391257986051249]
Mixed-precision quantization is a promising solution to find a better performance-efficiency trade-off than homogeneous quantization.
We present a simple post-training mixed precision algorithm that only requires a small unlabeled calibration dataset.
We show that we can find mixed precision networks that provide a better trade-off between accuracy and efficiency than their homogeneous bit-width equivalents.
arXiv Detail & Related papers (2023-02-10T17:47:54Z) - Efficient and Effective Methods for Mixed Precision Neural Network
Quantization for Faster, Energy-efficient Inference [3.3213055774512648]
Quantizing networks to lower precision is a powerful technique for simplifying networks.
Mixed precision quantization methods selectively tune the precision of individual layers to achieve a minimum drop in task performance.
To estimate the impact of layer precision choice on task performance, two methods are introduced.
Using EAGL and ALPS for layer precision selection, full-precision accuracy is recovered with a mix of 4-bit and 2-bit layers.
arXiv Detail & Related papers (2023-01-30T23:26:33Z) - Power-of-Two Quantization for Low Bitwidth and Hardware Compliant Neural
Networks [1.398698203665363]
In this paper, we explore non-linear quantization techniques for exploiting lower bit precision.
We developed the Quantization Aware Training (QAT) algorithm that allowed training of low bit width Power-of-Two (PoT) networks.
At the same time, PoT quantization vastly reduces the computational complexity of the neural network.
arXiv Detail & Related papers (2022-03-09T19:57:14Z) - Mixed Precision of Quantization of Transformer Language Models for
Speech Recognition [67.95996816744251]
State-of-the-art neural language models represented by Transformers are becoming increasingly complex and expensive for practical applications.
Current low-bit quantization methods are based on uniform precision and fail to account for the varying performance sensitivity at different parts of the system to quantization errors.
The optimal local precision settings are automatically learned using two techniques.
Experiments conducted on Penn Treebank (PTB) and a Switchboard corpus trained LF-MMI TDNN system.
arXiv Detail & Related papers (2021-11-29T09:57:00Z) - RMSMP: A Novel Deep Neural Network Quantization Framework with Row-wise
Mixed Schemes and Multiple Precisions [43.27226390407956]
This work proposes a novel Deep Neural Network (DNN) quantization framework, namely RMSMP, with a Row-wise Mixed-Scheme and Multi-Precision approach.
The proposed RMSMP is tested for the image classification and natural language processing (BERT) applications.
It achieves the best accuracy performance among state-of-the-arts under the same equivalent precisions.
arXiv Detail & Related papers (2021-10-30T02:53:35Z) - OMPQ: Orthogonal Mixed Precision Quantization [64.59700856607017]
Mixed precision quantization takes advantage of hardware's multiple bit-width arithmetic operations to unleash the full potential of network quantization.
We propose to optimize a proxy metric, the concept of networkity, which is highly correlated with the loss of the integer programming.
This approach reduces the search time and required data amount by orders of magnitude, with little compromise on quantization accuracy.
arXiv Detail & Related papers (2021-09-16T10:59:33Z) - HANT: Hardware-Aware Network Transformation [82.54824188745887]
We propose hardware-aware network transformation (HANT)
HANT replaces inefficient operations with more efficient alternatives using a neural architecture search like approach.
Our results on accelerating the EfficientNet family show that HANT can accelerate them by up to 3.6x with 0.4% drop in the top-1 accuracy on the ImageNet dataset.
arXiv Detail & Related papers (2021-07-12T18:46:34Z) - Quantized Neural Networks via {-1, +1} Encoding Decomposition and
Acceleration [83.84684675841167]
We propose a novel encoding scheme using -1, +1 to decompose quantized neural networks (QNNs) into multi-branch binary networks.
We validate the effectiveness of our method on large-scale image classification, object detection, and semantic segmentation tasks.
arXiv Detail & Related papers (2021-06-18T03:11:15Z) - Training Binary Neural Networks with Real-to-Binary Convolutions [52.91164959767517]
We show how to train binary networks to within a few percent points of the full precision counterpart.
We show how to build a strong baseline, which already achieves state-of-the-art accuracy.
We show that, when putting all of our improvements together, the proposed model beats the current state of the art by more than 5% top-1 accuracy on ImageNet.
arXiv Detail & Related papers (2020-03-25T17:54:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.