Statistically Guided Divide-and-Conquer for Sparse Factorization of
Large Matrix
- URL: http://arxiv.org/abs/2003.07898v1
- Date: Tue, 17 Mar 2020 19:12:21 GMT
- Title: Statistically Guided Divide-and-Conquer for Sparse Factorization of
Large Matrix
- Authors: Kun Chen, Ruipeng Dong, Wanwan Xu, Zemin Zheng
- Abstract summary: We formulate the statistical problem as a sparse factor regression and tackle it with a divide-conquer approach.
In the first stage division, we consider both latent parallel approaches for simplifying the task into a set of co-parsesparserank estimation (CURE) problems.
In the second stage division, we innovate a stagewise learning technique, consisting of a sequence simple incremental paths, to efficiently trace out the whole solution of CURE.
- Score: 2.345015036605934
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The sparse factorization of a large matrix is fundamental in modern
statistical learning. In particular, the sparse singular value decomposition
and its variants have been utilized in multivariate regression, factor
analysis, biclustering, vector time series modeling, among others. The appeal
of this factorization is owing to its power in discovering a
highly-interpretable latent association network, either between samples and
variables or between responses and predictors. However, many existing methods
are either ad hoc without a general performance guarantee, or are
computationally intensive, rendering them unsuitable for large-scale studies.
We formulate the statistical problem as a sparse factor regression and tackle
it with a divide-and-conquer approach. In the first stage of division, we
consider both sequential and parallel approaches for simplifying the task into
a set of co-sparse unit-rank estimation (CURE) problems, and establish the
statistical underpinnings of these commonly-adopted and yet poorly understood
deflation methods. In the second stage of division, we innovate a contended
stagewise learning technique, consisting of a sequence of simple incremental
updates, to efficiently trace out the whole solution paths of CURE. Our
algorithm has a much lower computational complexity than alternating convex
search, and the choice of the step size enables a flexible and principled
tradeoff between statistical accuracy and computational efficiency. Our work is
among the first to enable stagewise learning for non-convex problems, and the
idea can be applicable in many multi-convex problems. Extensive simulation
studies and an application in genetics demonstrate the effectiveness and
scalability of our approach.
Related papers
- Maximum likelihood inference for high-dimensional problems with multiaffine variable relations [2.4578723416255754]
In this paper, we consider inference problems where the variables are related by multiaffine expressions.
We propose a novel Alternating and Iteratively-Reweighted Least Squares (AIRLS) algorithm, and prove its convergence for problems with Generalized Normal Distributions.
arXiv Detail & Related papers (2024-09-05T13:07:31Z) - Variational Annealing on Graphs for Combinatorial Optimization [7.378582040635655]
We show that an autoregressive approach which captures statistical dependencies among solution variables yields superior performance on many popular CO problems.
We introduce subgraph tokenization in which the configuration of a set of solution variables is represented by a single token.
arXiv Detail & Related papers (2023-11-23T18:56:51Z) - Distributionally Robust Model-based Reinforcement Learning with Large
State Spaces [55.14361269378122]
Three major challenges in reinforcement learning are the complex dynamical systems with large state spaces, the costly data acquisition processes, and the deviation of real-world dynamics from the training environment deployment.
We study distributionally robust Markov decision processes with continuous state spaces under the widely used Kullback-Leibler, chi-square, and total variation uncertainty sets.
We propose a model-based approach that utilizes Gaussian Processes and the maximum variance reduction algorithm to efficiently learn multi-output nominal transition dynamics.
arXiv Detail & Related papers (2023-09-05T13:42:11Z) - Efficient Model-Free Exploration in Low-Rank MDPs [76.87340323826945]
Low-Rank Markov Decision Processes offer a simple, yet expressive framework for RL with function approximation.
Existing algorithms are either (1) computationally intractable, or (2) reliant upon restrictive statistical assumptions.
We propose the first provably sample-efficient algorithm for exploration in Low-Rank MDPs.
arXiv Detail & Related papers (2023-07-08T15:41:48Z) - Representation Learning with Multi-Step Inverse Kinematics: An Efficient
and Optimal Approach to Rich-Observation RL [106.82295532402335]
Existing reinforcement learning algorithms suffer from computational intractability, strong statistical assumptions, and suboptimal sample complexity.
We provide the first computationally efficient algorithm that attains rate-optimal sample complexity with respect to the desired accuracy level.
Our algorithm, MusIK, combines systematic exploration with representation learning based on multi-step inverse kinematics.
arXiv Detail & Related papers (2023-04-12T14:51:47Z) - Simple Stochastic and Online Gradient DescentAlgorithms for Pairwise
Learning [65.54757265434465]
Pairwise learning refers to learning tasks where the loss function depends on a pair instances.
Online descent (OGD) is a popular approach to handle streaming data in pairwise learning.
In this paper, we propose simple and online descent to methods for pairwise learning.
arXiv Detail & Related papers (2021-11-23T18:10:48Z) - Linear regression with partially mismatched data: local search with
theoretical guarantees [9.398989897176953]
We study an important variant of linear regression in which the predictor-response pairs are partially mismatched.
We use an optimization formulation to simultaneously learn the underlying regression coefficients and the permutation corresponding to the mismatches.
We prove that our local search algorithm converges to a nearly-optimal solution at a linear rate.
arXiv Detail & Related papers (2021-06-03T23:32:12Z) - Multi-task Supervised Learning via Cross-learning [102.64082402388192]
We consider a problem known as multi-task learning, consisting of fitting a set of regression functions intended for solving different tasks.
In our novel formulation, we couple the parameters of these functions, so that they learn in their task specific domains while staying close to each other.
This facilitates cross-fertilization in which data collected across different domains help improving the learning performance at each other task.
arXiv Detail & Related papers (2020-10-24T21:35:57Z) - Progressive Batching for Efficient Non-linear Least Squares [31.082253632197023]
Most improvements of the basic Gauss-Newton tackle convergence guarantees or leverage the sparsity of the underlying problem structure for computational speedup.
Our work borrows ideas from both machine learning and statistics, and we present an approach for non-linear least-squares that guarantees convergence while at the same time significantly reduces the required amount of computation.
arXiv Detail & Related papers (2020-10-21T13:00:04Z) - Rank-Based Multi-task Learning for Fair Regression [9.95899391250129]
We develop a novel learning approach for multi-taskart regression models based on a biased dataset.
We use a popular non-parametric oracle-based non-world multipliers dataset.
arXiv Detail & Related papers (2020-09-23T22:32:57Z) - Instability, Computational Efficiency and Statistical Accuracy [101.32305022521024]
We develop a framework that yields statistical accuracy based on interplay between the deterministic convergence rate of the algorithm at the population level, and its degree of (instability) when applied to an empirical object based on $n$ samples.
We provide applications of our general results to several concrete classes of models, including Gaussian mixture estimation, non-linear regression models, and informative non-response models.
arXiv Detail & Related papers (2020-05-22T22:30:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.