Maximum likelihood inference for high-dimensional problems with multiaffine variable relations
- URL: http://arxiv.org/abs/2409.03495v1
- Date: Thu, 5 Sep 2024 13:07:31 GMT
- Title: Maximum likelihood inference for high-dimensional problems with multiaffine variable relations
- Authors: Jean-Sébastien Brouillon, Florian Dörfler, Giancarlo Ferrari-Trecate,
- Abstract summary: In this paper, we consider inference problems where the variables are related by multiaffine expressions.
We propose a novel Alternating and Iteratively-Reweighted Least Squares (AIRLS) algorithm, and prove its convergence for problems with Generalized Normal Distributions.
- Score: 2.4578723416255754
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Maximum Likelihood Estimation of continuous variable models can be very challenging in high dimensions, due to potentially complex probability distributions. The existence of multiple interdependencies among variables can make it very difficult to establish convergence guarantees. This leads to a wide use of brute-force methods, such as grid searching and Monte-Carlo sampling and, when applicable, complex and problem-specific algorithms. In this paper, we consider inference problems where the variables are related by multiaffine expressions. We propose a novel Alternating and Iteratively-Reweighted Least Squares (AIRLS) algorithm, and prove its convergence for problems with Generalized Normal Distributions. We also provide an efficient method to compute the variance of the estimates obtained using AIRLS. Finally, we show how the method can be applied to graphical statistical models. We perform numerical experiments on several inference problems, showing significantly better performance than state-of-the-art approaches in terms of scalability, robustness to noise, and convergence speed due to an empirically observed super-linear convergence rate.
Related papers
- Efficient, Multimodal, and Derivative-Free Bayesian Inference With Fisher-Rao Gradient Flows [10.153270126742369]
We study efficient approximate sampling for probability distributions known up to normalization constants.
We specifically focus on a problem class arising in Bayesian inference for large-scale inverse problems in science and engineering applications.
arXiv Detail & Related papers (2024-06-25T04:07:22Z) - Proximal Interacting Particle Langevin Algorithms [0.0]
We introduce Proximal Interacting Particle Langevin Algorithms (PIPLA) for inference and learning in latent variable models.
We propose several variants within the novel proximal IPLA family, tailored to the problem of estimating parameters in a non-differentiable statistical model.
Our theory and experiments together show that PIPLA family can be the de facto choice for parameter estimation problems in latent variable models for non-differentiable models.
arXiv Detail & Related papers (2024-06-20T13:16:41Z) - Best Arm Identification with Fixed Budget: A Large Deviation Perspective [54.305323903582845]
We present sred, a truly adaptive algorithm that can reject arms in it any round based on the observed empirical gaps between the rewards of various arms.
In particular, we present sred, a truly adaptive algorithm that can reject arms in it any round based on the observed empirical gaps between the rewards of various arms.
arXiv Detail & Related papers (2023-12-19T13:17:43Z) - Variational Annealing on Graphs for Combinatorial Optimization [7.378582040635655]
We show that an autoregressive approach which captures statistical dependencies among solution variables yields superior performance on many popular CO problems.
We introduce subgraph tokenization in which the configuration of a set of solution variables is represented by a single token.
arXiv Detail & Related papers (2023-11-23T18:56:51Z) - Distributionally Robust Model-based Reinforcement Learning with Large
State Spaces [55.14361269378122]
Three major challenges in reinforcement learning are the complex dynamical systems with large state spaces, the costly data acquisition processes, and the deviation of real-world dynamics from the training environment deployment.
We study distributionally robust Markov decision processes with continuous state spaces under the widely used Kullback-Leibler, chi-square, and total variation uncertainty sets.
We propose a model-based approach that utilizes Gaussian Processes and the maximum variance reduction algorithm to efficiently learn multi-output nominal transition dynamics.
arXiv Detail & Related papers (2023-09-05T13:42:11Z) - SARAH-based Variance-reduced Algorithm for Stochastic Finite-sum
Cocoercive Variational Inequalities [137.6408511310322]
We consider the problem of finite-sum cocoercive variational inequalities.
For strongly monotone problems it is possible to achieve linear convergence to a solution using this method.
arXiv Detail & Related papers (2022-10-12T08:04:48Z) - An Application of a Multivariate Estimation of Distribution Algorithm to
Cancer Chemotherapy [59.40521061783166]
Chemotherapy treatment for cancer is a complex optimisation problem with a large number of interacting variables and constraints.
We show that the more sophisticated algorithm would yield better performance on a complex problem like this.
We hypothesise that this is caused by the more sophisticated algorithm being impeded by the large number of interactions in the problem.
arXiv Detail & Related papers (2022-05-17T15:28:46Z) - Partial Counterfactual Identification from Observational and
Experimental Data [83.798237968683]
We develop effective Monte Carlo algorithms to approximate the optimal bounds from an arbitrary combination of observational and experimental data.
Our algorithms are validated extensively on synthetic and real-world datasets.
arXiv Detail & Related papers (2021-10-12T02:21:30Z) - Optimal oracle inequalities for solving projected fixed-point equations [53.31620399640334]
We study methods that use a collection of random observations to compute approximate solutions by searching over a known low-dimensional subspace of the Hilbert space.
We show how our results precisely characterize the error of a class of temporal difference learning methods for the policy evaluation problem with linear function approximation.
arXiv Detail & Related papers (2020-12-09T20:19:32Z) - Statistically Guided Divide-and-Conquer for Sparse Factorization of
Large Matrix [2.345015036605934]
We formulate the statistical problem as a sparse factor regression and tackle it with a divide-conquer approach.
In the first stage division, we consider both latent parallel approaches for simplifying the task into a set of co-parsesparserank estimation (CURE) problems.
In the second stage division, we innovate a stagewise learning technique, consisting of a sequence simple incremental paths, to efficiently trace out the whole solution of CURE.
arXiv Detail & Related papers (2020-03-17T19:12:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.