BrazilDAM: A Benchmark dataset for Tailings Dam Detection
- URL: http://arxiv.org/abs/2003.07948v2
- Date: Wed, 13 May 2020 14:47:06 GMT
- Title: BrazilDAM: A Benchmark dataset for Tailings Dam Detection
- Authors: Edemir Ferreira, Matheus Brito, Remis Balaniuk, M\'ario S. Alvim, and
Jefersson A. dos Santos
- Abstract summary: We present BrazilDAM, a novel public dataset based on Sentinel-2 and Landsat-8 satellite images covering all tailings dams cataloged by the Brazilian National Mining Agency (ANM)
The dataset was built using georeferenced images from 769 dams, recorded between 2016 and 2019.
To evaluate BrazilDAM's predictive potential we performed classification essays using state-of-the-art deep Convolutional Neural Network (CNNs)
In the experiments, we achieved an average classification accuracy of 94.11% in tailing dam binary classification task.
- Score: 2.5885796059994193
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work we present BrazilDAM, a novel public dataset based on Sentinel-2
and Landsat-8 satellite images covering all tailings dams cataloged by the
Brazilian National Mining Agency (ANM). The dataset was built using
georeferenced images from 769 dams, recorded between 2016 and 2019. The time
series were processed in order to produce cloud free images. The dams contain
mining waste from different ore categories and have highly varying shapes,
areas and volumes, making BrazilDAM particularly interesting and challenging to
be used in machine learning benchmarks. The original catalog contains, besides
the dam coordinates, information about: the main ore, constructive method, risk
category, and associated potential damage. To evaluate BrazilDAM's predictive
potential we performed classification essays using state-of-the-art deep
Convolutional Neural Network (CNNs). In the experiments, we achieved an average
classification accuracy of 94.11% in tailing dam binary classification task. In
addition, others four setups of experiments were made using the complementary
information from the original catalog, exhaustively exploiting the capacity of
the proposed dataset.
Related papers
- Aerial Flood Scene Classification Using Fine-Tuned Attention-based Architecture for Flood-Prone Countries in South Asia [0.953693516244499]
We create a new dataset collecting aerial imagery of flooding events across South Asian countries.
For the classification, we propose a fine-tuned Compact Convolutional Transformer (CCT) based approach.
We also implement the YOLOv8 object detection model and detect houses and humans within the imagery.
arXiv Detail & Related papers (2024-10-31T19:23:43Z) - Leveraging Citizen Science for Flood Extent Detection using Machine
Learning Benchmark Dataset [0.9029386959445269]
We create a labeled known water body extent and flooded area extents during known flooding events covering about 36,000 sq. kilometers of regions within mainland U.S and Bangladesh.
We also leveraged citizen science by open-sourcing the dataset and hosting an open competition based on the dataset to rapidly prototype flood extent detection using community generated models.
We believe the dataset adds to already existing datasets based on Sentinel-1C SAR data and leads to more robust modeling of flood extents.
arXiv Detail & Related papers (2023-11-15T18:49:29Z) - HarvestNet: A Dataset for Detecting Smallholder Farming Activity Using
Harvest Piles and Remote Sensing [50.4506590177605]
HarvestNet is a dataset for mapping the presence of farms in the Ethiopian regions of Tigray and Amhara during 2020-2023.
We introduce a new approach based on the detection of harvest piles characteristic of many smallholder systems.
We conclude that remote sensing of harvest piles can contribute to more timely and accurate cropland assessments in food insecure regions.
arXiv Detail & Related papers (2023-08-23T11:03:28Z) - Classification of structural building damage grades from multi-temporal
photogrammetric point clouds using a machine learning model trained on
virtual laser scanning data [58.720142291102135]
We present a novel approach to automatically assess multi-class building damage from real-world point clouds.
We use a machine learning model trained on virtual laser scanning (VLS) data.
The model yields high multi-target classification accuracies (overall accuracy: 92.0% - 95.1%)
arXiv Detail & Related papers (2023-02-24T12:04:46Z) - FRMT: A Benchmark for Few-Shot Region-Aware Machine Translation [64.9546787488337]
We present FRMT, a new dataset and evaluation benchmark for Few-shot Region-aware Machine Translation.
The dataset consists of professional translations from English into two regional variants each of Portuguese and Mandarin Chinese.
arXiv Detail & Related papers (2022-10-01T05:02:04Z) - A Multi-purpose Real Haze Benchmark with Quantifiable Haze Levels and
Ground Truth [61.90504318229845]
This paper introduces the first paired real image benchmark dataset with hazy and haze-free images, and in-situ haze density measurements.
This dataset was produced in a controlled environment with professional smoke generating machines that covered the entire scene.
A subset of this dataset has been used for the Object Detection in Haze Track of CVPR UG2 2022 challenge.
arXiv Detail & Related papers (2022-06-13T19:14:06Z) - Bamboo: Building Mega-Scale Vision Dataset Continually with
Human-Machine Synergy [69.07918114341298]
Large-scale datasets play a vital role in computer vision.
Existing datasets are either collected according to label systems or blindly without differentiation to samples, making them inefficient and unscalable.
We advocate building a high-quality vision dataset actively annotated and continually on a comprehensive label system.
arXiv Detail & Related papers (2022-03-15T13:01:00Z) - Continental-Scale Building Detection from High Resolution Satellite
Imagery [5.56205296867374]
We study variations in architecture, loss functions, regularization, pre-training, self-training and post-processing that increase instance segmentation performance.
Experiments were carried out using a dataset of 100k satellite images across Africa containing 1.75M manually labelled building instances.
We report novel methods for improving performance of building detection with this type of model, including the use of mixup.
arXiv Detail & Related papers (2021-07-26T15:48:14Z) - Mining and Tailings Dam Detection In Satellite Imagery Using Deep
Learning [1.8047694351309205]
This work explores the combination of free cloud computing, free open-source software, and deep learning methods to analyse a real, large-scale problem.
It aims to identify unregistered ore mines and tailing dams in large areas of the Brazilian territory.
The efficacy of the approach is demonstrated by the discovery of 263 mines that do not have an official mining concession.
arXiv Detail & Related papers (2020-07-02T13:08:39Z) - MSNet: A Multilevel Instance Segmentation Network for Natural Disaster
Damage Assessment in Aerial Videos [74.22132693931145]
We study the problem of efficiently assessing building damage after natural disasters like hurricanes, floods or fires.
The first contribution is a new dataset, consisting of user-generated aerial videos from social media with annotations of instance-level building damage masks.
The second contribution is a new model, namely MSNet, which contains novel region proposal network designs.
arXiv Detail & Related papers (2020-06-30T02:23:05Z) - Weakly-supervised land classification for coastal zone based on deep
convolutional neural networks by incorporating dual-polarimetric
characteristics into training dataset [1.125851164829582]
We explore the performance of DCNNs on semantic segmentation using spaceborne polarimetric synthetic aperture radar (PolSAR) datasets.
The semantic segmentation task using PolSAR data can be categorized as weakly supervised learning when the characteristics of SAR data and data annotating procedures are factored in.
Three DCNN models, including SegNet, U-Net, and LinkNet, are implemented next.
arXiv Detail & Related papers (2020-03-30T17:32:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.