MSNet: A Multilevel Instance Segmentation Network for Natural Disaster
Damage Assessment in Aerial Videos
- URL: http://arxiv.org/abs/2006.16479v2
- Date: Thu, 31 Dec 2020 23:06:25 GMT
- Title: MSNet: A Multilevel Instance Segmentation Network for Natural Disaster
Damage Assessment in Aerial Videos
- Authors: Xiaoyu Zhu, Junwei Liang, Alexander Hauptmann
- Abstract summary: We study the problem of efficiently assessing building damage after natural disasters like hurricanes, floods or fires.
The first contribution is a new dataset, consisting of user-generated aerial videos from social media with annotations of instance-level building damage masks.
The second contribution is a new model, namely MSNet, which contains novel region proposal network designs.
- Score: 74.22132693931145
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we study the problem of efficiently assessing building damage
after natural disasters like hurricanes, floods or fires, through aerial video
analysis. We make two main contributions. The first contribution is a new
dataset, consisting of user-generated aerial videos from social media with
annotations of instance-level building damage masks. This provides the first
benchmark for quantitative evaluation of models to assess building damage using
aerial videos. The second contribution is a new model, namely MSNet, which
contains novel region proposal network designs and an unsupervised score
refinement network for confidence score calibration in both bounding box and
mask branches. We show that our model achieves state-of-the-art results
compared to previous methods in our dataset. We will release our data, models
and code.
Related papers
- Multi-step feature fusion for natural disaster damage assessment on satellite images [0.0]
We introduce a novel convolutional neural network (CNN) module that performs feature fusion at multiple network levels.
An additional network element - Fuse Module - was proposed to adapt any CNN model to analyze image pairs.
We report over a 3 percentage point increase in the accuracy of the Vision Transformer model.
arXiv Detail & Related papers (2024-10-29T09:47:32Z) - Robust Disaster Assessment from Aerial Imagery Using Text-to-Image Synthetic Data [66.49494950674402]
We leverage emerging text-to-image generative models in creating large-scale synthetic supervision for the task of damage assessment from aerial images.
We build an efficient and easily scalable pipeline to generate thousands of post-disaster images from low-resource domains.
We validate the strength of our proposed framework under cross-geography domain transfer setting from xBD and SKAI images in both single-source and multi-source settings.
arXiv Detail & Related papers (2024-05-22T16:07:05Z) - AB2CD: AI for Building Climate Damage Classification and Detection [0.0]
We explore the implementation of deep learning techniques for precise building damage assessment in the context of natural hazards.
We tackle the challenges of generalization to novel disasters and regions while accounting for the influence of low-quality and noisy labels.
Our research findings showcase the potential and limitations of advanced AI solutions in enhancing the impact assessment of climate change-induced extreme weather events.
arXiv Detail & Related papers (2023-09-03T03:37:04Z) - xFBD: Focused Building Damage Dataset and Analysis [7.862669992685641]
We propose an auxiliary challenge to the original xView2 competition.
This new challenge involves a new dataset and metrics indicating solution performance when damage is more local and limited than in xBD.
Methods that succeed on this challenge will provide more fine-grained, precise damage information than original xView2 solutions.
arXiv Detail & Related papers (2022-12-23T21:01:18Z) - A Systematic Evaluation of Node Embedding Robustness [77.29026280120277]
We assess the empirical robustness of node embedding models to random and adversarial poisoning attacks.
We compare edge addition, deletion and rewiring strategies computed using network properties as well as node labels.
We found that node classification suffers from higher performance degradation as opposed to network reconstruction.
arXiv Detail & Related papers (2022-09-16T17:20:23Z) - BDANet: Multiscale Convolutional Neural Network with Cross-directional
Attention for Building Damage Assessment from Satellite Images [24.989412626461213]
Building damage assessment from satellite imagery is critical before relief effort is deployed.
Deep neural networks have been successfully applied to building damage assessment.
We propose a novel two-stage convolutional neural network for Building Damage Assessment, called BDANet.
arXiv Detail & Related papers (2021-05-16T06:13:28Z) - Unsupervised Learning of 3D Object Categories from Videos in the Wild [75.09720013151247]
We focus on learning a model from multiple views of a large collection of object instances.
We propose a new neural network design, called warp-conditioned ray embedding (WCR), which significantly improves reconstruction.
Our evaluation demonstrates performance improvements over several deep monocular reconstruction baselines on existing benchmarks.
arXiv Detail & Related papers (2021-03-30T17:57:01Z) - Assessing out-of-domain generalization for robust building damage
detection [78.6363825307044]
Building damage detection can be automated by applying computer vision techniques to satellite imagery.
Models must be robust to a shift in distribution between disaster imagery available for training and the images of the new event.
We argue that future work should focus on the OOD regime instead.
arXiv Detail & Related papers (2020-11-20T10:30:43Z) - RescueNet: Joint Building Segmentation and Damage Assessment from
Satellite Imagery [83.49145695899388]
RescueNet is a unified model that can simultaneously segment buildings and assess the damage levels to individual buildings and can be trained end-to-end.
RescueNet is tested on the large scale and diverse xBD dataset and achieves significantly better building segmentation and damage classification performance than previous methods.
arXiv Detail & Related papers (2020-04-15T19:52:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.