Direct control of high magnetic fields for cold atom experiments based
on NV centers
- URL: http://arxiv.org/abs/2003.08101v2
- Date: Thu, 4 Feb 2021 17:42:56 GMT
- Title: Direct control of high magnetic fields for cold atom experiments based
on NV centers
- Authors: Alexander Hesse, Kerim K\"oster, Jakob Steiner, Julia Michl, Vadim
Vorobyov, Durga Dasari, J\"org Wrachtrup, Fred Jendrzejewski
- Abstract summary: In cold atomic gases the interactions between the atoms are directly controllable through external magnetic fields.
Here, we overcome the limitations of such an indirect control through a direct feedback scheme.
We achieve a control of better than 1 ppm after 20 minutes of integration time, ensuring high long-term stability for experiments.
- Score: 50.591267188664666
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In cold atomic gases the interactions between the atoms are directly
controllable through external magnetic fields. The magnetic field control is
typically performed indirectly by stabilizing the current through a pair of
Helmholtz coils, which produce this large bias field. Here, we overcome the
limitations of such an indirect control through a direct feedback scheme, which
is based on nitrogen-vacancy centers acting as a magnetic field sensor. This
allows us to measure and stabilize fields of 4.66 mT down to 12 nT RMS noise
over the course of 24 h, measured on a 1 Hz bandwidth. We achieve a control of
better than 1 ppm after 20 minutes of integration time, ensuring high long-term
stability for experiments. This approach extends direct magnetic field control
to strong magnetic fields, which could enable new precise quantum simulations
in this regime.
Related papers
- Characterization of Nuclear Magnetism at Ultralow and Zero Field using SQUIDs [0.0]
Nuclear magnetism underpins areas such as medicine in magnetic resonance imaging (MRI)
We design a hyperpolarization reactor to hyperpolarize [1-$13$C]pyruvate with the technique, signal amplification by reversible exchange in shield enables alignment transfer to heteronuclei (SABRE-SHEATH)
Using the results of the simulations, we determined that our hyperpolarization setup results in a $13$C polarization of 0.4%, a signal enhancement of 100 000 000 versus the predicted thermal equilibrium signal at earth field (50 $mu$T)
arXiv Detail & Related papers (2024-09-26T11:04:59Z) - Engineering field-insensitive molecular clock transitions for symmetry
violation searches [2.5943586090617377]
We show that sensitivity to both external magnetic and electric fields can be simultaneously suppressed using engineered radio frequency, microwave, or two-photon transitions.
The method is compatible with traditional Ramsey measurements, offers internal co-magnetometry, and is useful for systems with large angular momentum.
arXiv Detail & Related papers (2023-04-26T20:38:00Z) - Vector DC magnetic-field sensing with reference microwave field using
perfectly aligned nitrogen-vacancy centers in diamond [0.0]
We propose a method to measure vector DC magnetic fields using perfectly aligned NV centers without reference DC magnetic fields.
Our method of using a reference microwave field is a novel technique for sensitive vector DC magnetic-field sensing.
arXiv Detail & Related papers (2021-12-01T14:05:10Z) - Quantum control of nuclear spin qubits in a rapidly rotating diamond [62.997667081978825]
Nuclear spins in certain solids couple weakly to their environment, making them attractive candidates for quantum information processing and inertial sensing.
We demonstrate optical nuclear spin polarization and rapid quantum control of nuclear spins in a diamond physically rotating at $1,$kHz, faster than the nuclear spin coherence time.
Our work liberates a previously inaccessible degree of freedom of the NV nuclear spin, unlocking new approaches to quantum control and rotation sensing.
arXiv Detail & Related papers (2021-07-27T03:39:36Z) - Zero- and Low-Field Sensing with Nitrogen Vacancy Centers [0.0]
nitrogen vacancy (NV) centers in diamond are easily accessible and precise magnetic field sensors.
We exploit the full spin $S=1$ nature of the NV center, allowing us to detect nuclear spin signals at zero- and low-field.
Our work allows for much broader and simpler applications of NV centers as magnetic field sensors in the zero- and low-field regime.
arXiv Detail & Related papers (2021-07-22T09:29:18Z) - Surpassing the Energy Resolution Limit with ferromagnetic torque sensors [55.41644538483948]
We evaluate the optimal magnetic field resolution taking into account the thermomechanical noise and the mechanical detection noise at the standard quantum limit.
We find that the Energy Resolution Limit (ERL), pointed out in recent literature, can be surpassed by many orders of magnitude.
arXiv Detail & Related papers (2021-04-29T15:44:12Z) - Ferromagnetic Gyroscopes for Tests of Fundamental Physics [49.853792068336034]
A ferromagnetic gyroscope (FG) is a ferromagnet whose angular momentum is dominated by electron spin polarization and that will precess under the action of an external torque.
We model and analyze FG dynamics and sensitivity, focusing on practical schemes for experimental realization.
arXiv Detail & Related papers (2020-10-17T07:13:50Z) - Nuclear Spin Assisted Magnetic Field Angle Sensing [0.0]
Quantum sensing exploits the strong sensitivity of quantum systems to measure small external signals.
The nitrogen-vacancy center in diamond is one of the most promising platforms for real-world quantum sensing applications.
arXiv Detail & Related papers (2020-10-08T18:24:16Z) - Quantum coherent spin-electric control in a molecular nanomagnet at
clock transitions [57.50861918173065]
Electrical control of spins at the nanoscale offers architectural advantages in spintronics.
Recent demonstrations of electric-field (E-field) sensitivities in molecular spin materials are tantalising.
E-field sensitivities reported so far are rather weak, prompting the question of how to design molecules with stronger spin-electric couplings.
arXiv Detail & Related papers (2020-05-03T09:27:31Z) - Optimal coupling of HoW$_{10}$ molecular magnets to superconducting
circuits near spin clock transitions [85.83811987257297]
We study the coupling of pure and magnetically diluted crystals of HoW$_10$ magnetic clusters to microwave superconducting coplanar waveguides.
Results show that engineering spin-clock states of molecular systems offers a promising strategy to combine sizeable spin-photon interactions with a sufficient isolation from unwanted magnetic noise sources.
arXiv Detail & Related papers (2019-11-18T11:03:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.