Zero- and Low-Field Sensing with Nitrogen Vacancy Centers
- URL: http://arxiv.org/abs/2107.10537v2
- Date: Wed, 2 Feb 2022 20:39:15 GMT
- Title: Zero- and Low-Field Sensing with Nitrogen Vacancy Centers
- Authors: Philipp J. Vetter, Alastair Marshall, Genko T. Genov, Tim F. Weiss,
Nico Striegler, Eva F. Gro{\ss}mann, Santiago Oviedo Casado, Javier Cerrillo,
Javier Prior, Philipp Neumann and Fedor Jelezko
- Abstract summary: nitrogen vacancy (NV) centers in diamond are easily accessible and precise magnetic field sensors.
We exploit the full spin $S=1$ nature of the NV center, allowing us to detect nuclear spin signals at zero- and low-field.
Our work allows for much broader and simpler applications of NV centers as magnetic field sensors in the zero- and low-field regime.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Over the years, an enormous effort has been made to establish nitrogen
vacancy (NV) centers in diamond as easily accessible and precise magnetic field
sensors. However, most of their sensing protocols rely on the application of
bias magnetic fields, preventing their usage in zero- or low-field experiments.
We overcome this limitation by exploiting the full spin $S=1$ nature of the NV
center, allowing us to detect nuclear spin signals at zero- and low-field with
a linearly polarized microwave field. As conventional dynamical decoupling
protocols fail in this regime, we develop new robust pulse sequences and
optimized pulse pairs, which allow us to sense temperature and weak AC magnetic
fields and achieve an efficient decoupling from environmental noise. Our work
allows for much broader and simpler applications of NV centers as magnetic
field sensors in the zero- and low-field regime and can be further extended to
three-level systems in ions and atoms.
Related papers
- Control of an environmental spin defect beyond the coherence limit of a central spin [79.16635054977068]
We present a scalable approach to increase the size of electronic-spin registers.
We experimentally realize this approach to demonstrate the detection and coherent control of an unknown electronic spin outside the coherence limit of a central NV.
Our work paves the way for engineering larger quantum spin registers with the potential to advance nanoscale sensing, enable correlated noise spectroscopy for error correction, and facilitate the realization of spin-chain quantum wires for quantum communication.
arXiv Detail & Related papers (2023-06-29T17:55:16Z) - Simulation of ODMR Spectra from Nitrogen-Vacancy Ensembles in Diamond
for Electric Field Sensing [0.0]
We present an open source simulation tool that models the influence of arbitrary electric and magnetic fields on the electronic and nuclear spin states of NV ensembles.
Specifically, the code computes the transition strengths and predicts the sensitivity under shot-noise-limited optically-detected magnetic resonance.
We show that our code can be used to optimize sensitivity in situations where usual arguments based on neglecting terms in the full Hamiltonian would give sub-optimal results.
arXiv Detail & Related papers (2023-01-10T18:16:12Z) - All-Optical Nuclear Quantum Sensing using Nitrogen-Vacancy Centers in
Diamond [52.77024349608834]
Microwave or radio-frequency driving poses a significant limitation for miniaturization, energy-efficiency and non-invasiveness of quantum sensors.
We overcome this limitation by demonstrating a purely optical approach to coherent quantum sensing.
Our results pave the way for highly compact quantum sensors to be employed for magnetometry or gyroscopy applications.
arXiv Detail & Related papers (2022-12-14T08:34:11Z) - High-Resolution NMR Spectroscopy at Large Fields with Nitrogen Vacancy
Centers [0.0]
We map the relevant energy shifts in the amplitude of an induced nuclear spin signal that is subsequently transferred to the sensor.
Our method leads to high spectral resolutions ultimately limited by the coherence of the nuclear spin signal.
arXiv Detail & Related papers (2022-05-09T09:56:30Z) - Optically induced static magnetic field in ensemble of nitrogen-vacancy
centers in diamond [4.734663513676815]
Local magnetic field at the nanoscale is desired for many applications such as spin-qubit-based quantum memories.
Here, we demonstrate photonic spin density (PSD) induced effective static magnetic field for an ensemble of nitrogen-vacancy (NV) centers in bulk diamond.
arXiv Detail & Related papers (2022-05-06T04:38:10Z) - Vector DC magnetic-field sensing with reference microwave field using
perfectly aligned nitrogen-vacancy centers in diamond [0.0]
We propose a method to measure vector DC magnetic fields using perfectly aligned NV centers without reference DC magnetic fields.
Our method of using a reference microwave field is a novel technique for sensitive vector DC magnetic-field sensing.
arXiv Detail & Related papers (2021-12-01T14:05:10Z) - Quantum control of nuclear spin qubits in a rapidly rotating diamond [62.997667081978825]
Nuclear spins in certain solids couple weakly to their environment, making them attractive candidates for quantum information processing and inertial sensing.
We demonstrate optical nuclear spin polarization and rapid quantum control of nuclear spins in a diamond physically rotating at $1,$kHz, faster than the nuclear spin coherence time.
Our work liberates a previously inaccessible degree of freedom of the NV nuclear spin, unlocking new approaches to quantum control and rotation sensing.
arXiv Detail & Related papers (2021-07-27T03:39:36Z) - Surpassing the Energy Resolution Limit with ferromagnetic torque sensors [55.41644538483948]
We evaluate the optimal magnetic field resolution taking into account the thermomechanical noise and the mechanical detection noise at the standard quantum limit.
We find that the Energy Resolution Limit (ERL), pointed out in recent literature, can be surpassed by many orders of magnitude.
arXiv Detail & Related papers (2021-04-29T15:44:12Z) - Laser threshold magnetometry using green light absorption by diamond
nitrogen vacancies in an external cavity laser [52.77024349608834]
Nitrogen vacancy (NV) centers in diamond have attracted considerable recent interest for use in quantum sensing.
We show theoretical sensitivity to magnetic field on the pT/sqrt(Hz) level is possible using a diamond with an optimal density of NV centers.
arXiv Detail & Related papers (2021-01-22T18:58:05Z) - Nuclear Spin Assisted Magnetic Field Angle Sensing [0.0]
Quantum sensing exploits the strong sensitivity of quantum systems to measure small external signals.
The nitrogen-vacancy center in diamond is one of the most promising platforms for real-world quantum sensing applications.
arXiv Detail & Related papers (2020-10-08T18:24:16Z) - Direct control of high magnetic fields for cold atom experiments based
on NV centers [50.591267188664666]
In cold atomic gases the interactions between the atoms are directly controllable through external magnetic fields.
Here, we overcome the limitations of such an indirect control through a direct feedback scheme.
We achieve a control of better than 1 ppm after 20 minutes of integration time, ensuring high long-term stability for experiments.
arXiv Detail & Related papers (2020-03-18T09:03:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.