Social Navigation with Human Empowerment driven Deep Reinforcement
Learning
- URL: http://arxiv.org/abs/2003.08158v3
- Date: Wed, 5 Aug 2020 11:49:39 GMT
- Title: Social Navigation with Human Empowerment driven Deep Reinforcement
Learning
- Authors: Tessa van der Heiden, Florian Mirus, Herke van Hoof
- Abstract summary: The next generation of mobile robots needs to be socially-compliant to be accepted by their human collaborators.
In this paper, we go beyond the approach of classical acfRL and provide our agent with intrinsic motivation using empowerment.
Our approach has a positive influence on humans, as it minimizes its distance to humans and thus decreases human travel time while moving efficiently towards its own goal.
- Score: 20.815007485176615
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Mobile robot navigation has seen extensive research in the last decades. The
aspect of collaboration with robots and humans sharing workspaces will become
increasingly important in the future. Therefore, the next generation of mobile
robots needs to be socially-compliant to be accepted by their human
collaborators. However, a formal definition of compliance is not
straightforward. On the other hand, empowerment has been used by artificial
agents to learn complicated and generalized actions and also has been shown to
be a good model for biological behaviors. In this paper, we go beyond the
approach of classical \acf{RL} and provide our agent with intrinsic motivation
using empowerment. In contrast to self-empowerment, a robot employing our
approach strives for the empowerment of people in its environment, so they are
not disturbed by the robot's presence and motion. In our experiments, we show
that our approach has a positive influence on humans, as it minimizes its
distance to humans and thus decreases human travel time while moving
efficiently towards its own goal. An interactive user-study shows that our
method is considered more social than other state-of-the-art approaches by the
participants.
Related papers
- HumanoidBench: Simulated Humanoid Benchmark for Whole-Body Locomotion and Manipulation [50.616995671367704]
We present a high-dimensional, simulated robot learning benchmark, HumanoidBench, featuring a humanoid robot equipped with dexterous hands.
Our findings reveal that state-of-the-art reinforcement learning algorithms struggle with most tasks, whereas a hierarchical learning approach achieves superior performance when supported by robust low-level policies.
arXiv Detail & Related papers (2024-03-15T17:45:44Z) - Socially Integrated Navigation: A Social Acting Robot with Deep Reinforcement Learning [0.7864304771129751]
Mobile robots are being used on a large scale in various crowded situations and become part of our society.
Socially acceptable navigation behavior of a mobile robot with individual human consideration is an essential requirement for scalable applications and human acceptance.
We propose a novel socially integrated navigation approach where the robot's social behavior is adaptive and emerges from the interaction with humans.
arXiv Detail & Related papers (2024-03-14T18:25:40Z) - Robot Interaction Behavior Generation based on Social Motion Forecasting for Human-Robot Interaction [9.806227900768926]
We propose to model social motion forecasting in a shared human-robot representation space.
ECHO operates in the aforementioned shared space to predict the future motions of the agents encountered in social scenarios.
We evaluate our model in multi-person and human-robot motion forecasting tasks and obtain state-of-the-art performance by a large margin.
arXiv Detail & Related papers (2024-02-07T11:37:14Z) - ImitationNet: Unsupervised Human-to-Robot Motion Retargeting via Shared Latent Space [9.806227900768926]
This paper introduces a novel deep-learning approach for human-to-robot motion.
Our method does not require paired human-to-robot data, which facilitates its translation to new robots.
Our model outperforms existing works regarding human-to-robot similarity in terms of efficiency and precision.
arXiv Detail & Related papers (2023-09-11T08:55:04Z) - SACSoN: Scalable Autonomous Control for Social Navigation [62.59274275261392]
We develop methods for training policies for socially unobtrusive navigation.
By minimizing this counterfactual perturbation, we can induce robots to behave in ways that do not alter the natural behavior of humans in the shared space.
We collect a large dataset where an indoor mobile robot interacts with human bystanders.
arXiv Detail & Related papers (2023-06-02T19:07:52Z) - HERD: Continuous Human-to-Robot Evolution for Learning from Human
Demonstration [57.045140028275036]
We show that manipulation skills can be transferred from a human to a robot through the use of micro-evolutionary reinforcement learning.
We propose an algorithm for multi-dimensional evolution path searching that allows joint optimization of both the robot evolution path and the policy.
arXiv Detail & Related papers (2022-12-08T15:56:13Z) - Show Me What You Can Do: Capability Calibration on Reachable Workspace
for Human-Robot Collaboration [83.4081612443128]
We show that a short calibration using REMP can effectively bridge the gap between what a non-expert user thinks a robot can reach and the ground-truth.
We show that this calibration procedure not only results in better user perception, but also promotes more efficient human-robot collaborations.
arXiv Detail & Related papers (2021-03-06T09:14:30Z) - From Learning to Relearning: A Framework for Diminishing Bias in Social
Robot Navigation [3.3511723893430476]
We argue that social navigation models can replicate, promote, and amplify societal unfairness such as discrimination and segregation.
Our proposed framework consists of two components: textitlearning which incorporates social context into the learning process to account for safety and comfort, and textitrelearning to detect and correct potentially harmful outcomes before the onset.
arXiv Detail & Related papers (2021-01-07T17:42:35Z) - Joint Mind Modeling for Explanation Generation in Complex Human-Robot
Collaborative Tasks [83.37025218216888]
We propose a novel explainable AI (XAI) framework for achieving human-like communication in human-robot collaborations.
The robot builds a hierarchical mind model of the human user and generates explanations of its own mind as a form of communications.
Results show that the generated explanations of our approach significantly improves the collaboration performance and user perception of the robot.
arXiv Detail & Related papers (2020-07-24T23:35:03Z) - Human Grasp Classification for Reactive Human-to-Robot Handovers [50.91803283297065]
We propose an approach for human-to-robot handovers in which the robot meets the human halfway.
We collect a human grasp dataset which covers typical ways of holding objects with various hand shapes and poses.
We present a planning and execution approach that takes the object from the human hand according to the detected grasp and hand position.
arXiv Detail & Related papers (2020-03-12T19:58:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.