Socially Integrated Navigation: A Social Acting Robot with Deep Reinforcement Learning
- URL: http://arxiv.org/abs/2403.09793v3
- Date: Fri, 26 Jul 2024 06:41:45 GMT
- Title: Socially Integrated Navigation: A Social Acting Robot with Deep Reinforcement Learning
- Authors: Daniel Flögel, Lars Fischer, Thomas Rudolf, Tobias Schürmann, Sören Hohmann,
- Abstract summary: Mobile robots are being used on a large scale in various crowded situations and become part of our society.
Socially acceptable navigation behavior of a mobile robot with individual human consideration is an essential requirement for scalable applications and human acceptance.
We propose a novel socially integrated navigation approach where the robot's social behavior is adaptive and emerges from the interaction with humans.
- Score: 0.7864304771129751
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Mobile robots are being used on a large scale in various crowded situations and become part of our society. The socially acceptable navigation behavior of a mobile robot with individual human consideration is an essential requirement for scalable applications and human acceptance. Deep Reinforcement Learning (DRL) approaches are recently used to learn a robot's navigation policy and to model the complex interactions between robots and humans. We propose to divide existing DRL-based navigation approaches based on the robot's exhibited social behavior and distinguish between social collision avoidance with a lack of social behavior and socially aware approaches with explicit predefined social behavior. In addition, we propose a novel socially integrated navigation approach where the robot's social behavior is adaptive and emerges from the interaction with humans. The formulation of our approach is derived from a sociological definition, which states that social acting is oriented toward the acting of others. The DRL policy is trained in an environment where other agents interact socially integrated and reward the robot's behavior individually. The simulation results indicate that the proposed socially integrated navigation approach outperforms a socially aware approach in terms of ego navigation performance while significantly reducing the negative impact on all agents within the environment.
Related papers
- Learning Social Cost Functions for Human-Aware Path Planning [2.6995631218854235]
We propose a novel method to recognize common social scenarios and modify a traditional planner's cost function to adapt to them.
Our approach allows the robot to learn different social norms with a single learned model, rather than having different modules for each task.
arXiv Detail & Related papers (2024-07-15T08:57:02Z) - Robot Interaction Behavior Generation based on Social Motion Forecasting for Human-Robot Interaction [9.806227900768926]
We propose to model social motion forecasting in a shared human-robot representation space.
ECHO operates in the aforementioned shared space to predict the future motions of the agents encountered in social scenarios.
We evaluate our model in multi-person and human-robot motion forecasting tasks and obtain state-of-the-art performance by a large margin.
arXiv Detail & Related papers (2024-02-07T11:37:14Z) - SOTOPIA: Interactive Evaluation for Social Intelligence in Language Agents [107.4138224020773]
We present SOTOPIA, an open-ended environment to simulate complex social interactions between artificial agents and humans.
In our environment, agents role-play and interact under a wide variety of scenarios; they coordinate, collaborate, exchange, and compete with each other to achieve complex social goals.
We find that GPT-4 achieves a significantly lower goal completion rate than humans and struggles to exhibit social commonsense reasoning and strategic communication skills.
arXiv Detail & Related papers (2023-10-18T02:27:01Z) - Exploring Social Motion Latent Space and Human Awareness for Effective
Robot Navigation in Crowded Environments [3.714800947440209]
The proposed method achieves significant improvements in social navigation metrics such as success rate, navigation time, and trajectory length.
The concept of humans' awareness towards the robot is introduced into the social robot navigation framework.
arXiv Detail & Related papers (2023-10-11T09:25:24Z) - Principles and Guidelines for Evaluating Social Robot Navigation
Algorithms [44.51586279645062]
Social robot navigation is difficult to evaluate because it involves dynamic human agents and their perceptions of the appropriateness of robot behavior.
Our contributions include (a) a definition of a socially navigating robot as one that respects the principles of safety, comfort, legibility, politeness, social competency, agent understanding, proactivity, and responsiveness to context, (b) guidelines for the use of metrics, development of scenarios, benchmarks, datasets, and simulators to evaluate social navigation, and (c) a social navigation metrics framework to make it easier to compare results from different simulators, robots and datasets.
arXiv Detail & Related papers (2023-06-29T07:31:43Z) - SACSoN: Scalable Autonomous Control for Social Navigation [62.59274275261392]
We develop methods for training policies for socially unobtrusive navigation.
By minimizing this counterfactual perturbation, we can induce robots to behave in ways that do not alter the natural behavior of humans in the shared space.
We collect a large dataset where an indoor mobile robot interacts with human bystanders.
arXiv Detail & Related papers (2023-06-02T19:07:52Z) - Gesture2Path: Imitation Learning for Gesture-aware Navigation [54.570943577423094]
We present Gesture2Path, a novel social navigation approach that combines image-based imitation learning with model-predictive control.
We deploy our method on real robots and showcase the effectiveness of our approach for the four gestures-navigation scenarios.
arXiv Detail & Related papers (2022-09-19T23:05:36Z) - Socially Compliant Navigation Dataset (SCAND): A Large-Scale Dataset of
Demonstrations for Social Navigation [92.66286342108934]
Social navigation is the capability of an autonomous agent, such as a robot, to navigate in a'socially compliant' manner in the presence of other intelligent agents such as humans.
Our dataset contains 8.7 hours, 138 trajectories, 25 miles of socially compliant, human teleoperated driving demonstrations.
arXiv Detail & Related papers (2022-03-28T19:09:11Z) - PHASE: PHysically-grounded Abstract Social Events for Machine Social
Perception [50.551003004553806]
We create a dataset of physically-grounded abstract social events, PHASE, that resemble a wide range of real-life social interactions.
Phase is validated with human experiments demonstrating that humans perceive rich interactions in the social events.
As a baseline model, we introduce a Bayesian inverse planning approach, SIMPLE, which outperforms state-of-the-art feed-forward neural networks.
arXiv Detail & Related papers (2021-03-02T18:44:57Z) - From Learning to Relearning: A Framework for Diminishing Bias in Social
Robot Navigation [3.3511723893430476]
We argue that social navigation models can replicate, promote, and amplify societal unfairness such as discrimination and segregation.
Our proposed framework consists of two components: textitlearning which incorporates social context into the learning process to account for safety and comfort, and textitrelearning to detect and correct potentially harmful outcomes before the onset.
arXiv Detail & Related papers (2021-01-07T17:42:35Z) - Social Navigation with Human Empowerment driven Deep Reinforcement
Learning [20.815007485176615]
The next generation of mobile robots needs to be socially-compliant to be accepted by their human collaborators.
In this paper, we go beyond the approach of classical acfRL and provide our agent with intrinsic motivation using empowerment.
Our approach has a positive influence on humans, as it minimizes its distance to humans and thus decreases human travel time while moving efficiently towards its own goal.
arXiv Detail & Related papers (2020-03-18T11:16:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.