論文の概要: 3D Crowd Counting via Geometric Attention-guided Multi-View Fusion
- arxiv url: http://arxiv.org/abs/2003.08162v2
- Date: Wed, 30 Oct 2024 15:53:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-04 01:02:22.929911
- Title: 3D Crowd Counting via Geometric Attention-guided Multi-View Fusion
- Title(参考訳): 幾何学的注意誘導型マルチビューフュージョンによる3次元集団計数
- Authors: Qi Zhang, Antoni B. Chan,
- Abstract要約: 本稿では,3次元シーンレベルの密度マップと3次元特徴融合により,多視点群カウントタスクを解くことを提案する。
2D融合と比較すると、3D融合はz次元(高さ)に沿った人々のより多くの情報を抽出し、複数のビューにわたるスケールの変動に対処するのに役立つ。
3D密度マップは、和がカウントである2D密度マップの特性を保ちながら、群衆密度に関する3D情報も提供する。
- 参考スコア(独自算出の注目度): 50.520192402702015
- License:
- Abstract: Recently multi-view crowd counting using deep neural networks has been proposed to enable counting in large and wide scenes using multiple cameras. The current methods project the camera-view features to the average-height plane of the 3D world, and then fuse the projected multi-view features to predict a 2D scene-level density map on the ground (i.e., birds-eye view). Unlike the previous research, we consider the variable height of the people in the 3D world and propose to solve the multi-view crowd counting task through 3D feature fusion with 3D scene-level density maps, instead of the 2D density map on the ground plane. Compared to 2D fusion, the 3D fusion extracts more information of the people along the z-dimension (height), which helps to address the scale variations across multiple views. The 3D density maps still preserve the 2D density maps property that the sum is the count, while also providing 3D information about the crowd density. Furthermore, instead of using the standard method of copying the features along the view ray in the 2D-to-3D projection, we propose an attention module based on a height estimation network, which forces each 2D pixel to be projected to one 3D voxel along the view ray. We also explore the projection consistency among the 3D prediction and the ground truth in the 2D views to further enhance the counting performance. The proposed method is tested on the synthetic and real-world multiview counting datasets and achieves better or comparable counting performance to the state-of-the-art.
- Abstract(参考訳): 近年,複数のカメラを用いた大規模かつ広いシーンのカウントを可能にするために,ディープニューラルネットワークを用いた多視点群衆カウント法が提案されている。
現在の手法では、カメラビューは3次元世界の平均高度面に投影され、投影されたマルチビュー特徴は、地上の2次元シーンレベルの密度マップ(鳥眼ビュー)を予測するために融合される。
従来の研究とは異なり, 地上平面上の2次元密度マップの代わりに, 3次元特徴量マップと3次元特徴量マップを融合させて, 多視点群カウントタスクを解くことを提案する。
2D融合と比較すると、3D融合はz次元(高さ)に沿った人々のより多くの情報を抽出し、複数のビューにわたるスケールの変動に対処するのに役立つ。
3D密度マップは、和がカウントである2D密度マップの特性を保ちながら、群衆密度に関する3D情報も提供する。
さらに,2次元から3次元のプロジェクションにおいて,視線に沿って特徴を写す標準的な手法の代わりに,視線に沿って各2次元ピクセルを1つの3次元ボクセルに投影するよう強制する高さ推定ネットワークに基づく注目モジュールを提案する。
また,2次元ビューにおける3次元予測と基底的真実の射影整合性について検討し,計数性能をさらに向上させる。
提案手法は, 合成および実世界のマルチビューカウントデータセットを用いてテストし, 最先端技術に対して, より優れた, 同等のカウント性能を実現する。
関連論文リスト
- Deep Height Decoupling for Precise Vision-based 3D Occupancy Prediction [28.071645239063553]
本稿では,DHD(Deep Height Decoupling,ディープハイトデカップリング,Deep Height Decoupling,DHD)について述べる。
一般的なOcc3D-nuScenesベンチマークでは,最小入力フレームでも最先端の性能を実現する。
論文 参考訳(メタデータ) (2024-09-12T12:12:19Z) - SurroundOcc: Multi-Camera 3D Occupancy Prediction for Autonomous Driving [98.74706005223685]
3Dシーン理解は、視覚に基づく自動運転において重要な役割を果たす。
マルチカメラ画像を用いたSurroundOcc法を提案する。
論文 参考訳(メタデータ) (2023-03-16T17:59:08Z) - Learning Multi-View Aggregation In the Wild for Large-Scale 3D Semantic
Segmentation [3.5939555573102853]
近年の3次元セマンティックセグメンテーションの研究は、各モータリティを専用ネットワークで処理することで、画像と点雲の相乗効果を活用することを提案する。
任意の位置で撮影された画像から特徴をマージするために,3Dポイントの視聴条件を利用したエンドツーエンドのトレーニング可能な多視点アグリゲーションモデルを提案する。
本手法は,標準的な2Dネットワークと3Dネットワークを組み合わせることで,カラー化された点群とハイブリッドな2D/3Dネットワーク上での3Dモデルの性能を向上する。
論文 参考訳(メタデータ) (2022-04-15T17:10:48Z) - Gait Recognition in the Wild with Dense 3D Representations and A
Benchmark [86.68648536257588]
既存の歩行認識の研究は、制約されたシーンにおける人間の体のシルエットや骨格のような2D表現によって支配されている。
本稿では,野生における歩行認識のための高密度な3次元表現の探索を目的とする。
大規模な3D表現に基づく歩行認識データセットGait3Dを構築した。
論文 参考訳(メタデータ) (2022-04-06T03:54:06Z) - From Multi-View to Hollow-3D: Hallucinated Hollow-3D R-CNN for 3D Object
Detection [101.20784125067559]
本稿では,3次元物体検出の問題に対処するため,Halucinated Hollow-3D R-CNNという新しいアーキテクチャを提案する。
本稿では,まず,視点ビューと鳥眼ビューに点雲を逐次投影することで,多視点特徴を抽出する。
3Dオブジェクトは、新しい階層型Voxel RoIプール操作でボックスリファインメントモジュールを介して検出される。
論文 参考訳(メタデータ) (2021-07-30T02:00:06Z) - Multi-Modality Task Cascade for 3D Object Detection [22.131228757850373]
多くの手法は2つのモデルを個別に訓練し、単純な特徴結合を用いて3Dセンサーデータを表現している。
本稿では,3次元ボックスの提案を利用して2次元セグメンテーション予測を改善する新しいマルチモードタスクカスケードネットワーク(MTC-RCNN)を提案する。
2段階の3次元モジュール間の2次元ネットワークを組み込むことで,2次元および3次元のタスク性能が大幅に向上することを示す。
論文 参考訳(メタデータ) (2021-07-08T17:55:01Z) - 3D-to-2D Distillation for Indoor Scene Parsing [78.36781565047656]
大規模3次元データリポジトリから抽出した3次元特徴を有効活用し,RGB画像から抽出した2次元特徴を向上する手法を提案する。
まず,事前学習した3Dネットワークから3D知識を抽出して2Dネットワークを監督し,トレーニング中の2D特徴からシミュレーションされた3D特徴を学習する。
次に,2次元の正規化方式を設計し,2次元特徴と3次元特徴のキャリブレーションを行った。
第3に,非ペアの3dデータを用いたトレーニングのフレームワークを拡張するために,意味を意識した対向的トレーニングモデルを設計した。
論文 参考訳(メタデータ) (2021-04-06T02:22:24Z) - Cylinder3D: An Effective 3D Framework for Driving-scene LiDAR Semantic
Segmentation [87.54570024320354]
大規模運転シーンのLiDARセマンティックセマンティックセグメンテーションのための最先端の手法は、しばしば2D空間の点雲を投影して処理する。
3D-to-2Dプロジェクションの問題に取り組むための簡単な解決策は、3D表現を保ち、3D空間の点を処理することである。
我々は3次元シリンダー分割と3次元シリンダー畳み込みに基づくフレームワークをCylinder3Dとして開発し,3次元トポロジの関係と運転シーンの点雲の構造を利用する。
論文 参考訳(メタデータ) (2020-08-04T13:56:19Z) - Virtual Multi-view Fusion for 3D Semantic Segmentation [11.259694096475766]
仮想ビューにより,従来のマルチビュー手法よりも2次元セマンティックセグメンテーションネットワークを効果的に学習できることを示す。
画素ごとの2次元予測を3次元面に集約すると,仮想多視点融合法により,より優れた3次元セマンティックセマンティックセマンティクス結果が得られる。
論文 参考訳(メタデータ) (2020-07-26T14:46:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。