論文の概要: Adaptive-Step Graph Meta-Learner for Few-Shot Graph Classification
- arxiv url: http://arxiv.org/abs/2003.08246v2
- Date: Tue, 23 Jun 2020 06:22:36 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-22 09:31:02.666797
- Title: Adaptive-Step Graph Meta-Learner for Few-Shot Graph Classification
- Title(参考訳): Few-Shotグラフ分類のための適応ステップグラフメタラーナ
- Authors: Ning Ma, Jiajun Bu, Jieyu Yang, Zhen Zhang, Chengwei Yao, Zhi Yu,
Sheng Zhou and Xifeng Yan
- Abstract要約: 本稿では,グラフデータへの高速適応にGNNをベースとしたグラフメタラーナを用いた新しいフレームワークを提案する。
我々のフレームワークは、ベースラインと比較して、いくつかのショットグラフ分類タスクに対して最先端の結果を得る。
- 参考スコア(独自算出の注目度): 25.883839335786025
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph classification aims to extract accurate information from
graph-structured data for classification and is becoming more and more
important in graph learning community. Although Graph Neural Networks (GNNs)
have been successfully applied to graph classification tasks, most of them
overlook the scarcity of labeled graph data in many applications. For example,
in bioinformatics, obtaining protein graph labels usually needs laborious
experiments. Recently, few-shot learning has been explored to alleviate this
problem with only given a few labeled graph samples of test classes. The shared
sub-structures between training classes and test classes are essential in
few-shot graph classification. Exiting methods assume that the test classes
belong to the same set of super-classes clustered from training classes.
However, according to our observations, the label spaces of training classes
and test classes usually do not overlap in real-world scenario. As a result,
the existing methods don't well capture the local structures of unseen test
classes. To overcome the limitation, in this paper, we propose a direct method
to capture the sub-structures with well initialized meta-learner within a few
adaptation steps. More specifically, (1) we propose a novel framework
consisting of a graph meta-learner, which uses GNNs based modules for fast
adaptation on graph data, and a step controller for the robustness and
generalization of meta-learner; (2) we provide quantitative analysis for the
framework and give a graph-dependent upper bound of the generalization error
based on our framework; (3) the extensive experiments on real-world datasets
demonstrate that our framework gets state-of-the-art results on several
few-shot graph classification tasks compared to baselines.
- Abstract(参考訳): グラフ分類は、グラフ構造化データから正確な情報を抽出して分類することを目的としており、グラフ学習コミュニティにおいてますます重要になっている。
グラフニューラルネットワーク(GNN)はグラフ分類タスクにうまく適用されているが、多くのアプリケーションでラベル付きグラフデータの不足を見落としている。
例えば、バイオインフォマティクスでは、タンパク質グラフラベルを取得するには、通常、精巧な実験が必要である。
最近、テストクラスのラベル付きグラフサンプルが与えられただけでこの問題を緩和するために、わずかなショット学習が研究されている。
トレーニングクラスとテストクラス間の共有サブ構造は、少数ショットグラフ分類において必須である。
終了メソッドは、テストクラスがトレーニングクラスからクラスタ化された同じスーパークラスのセットに属すると仮定する。
しかし、我々の観察によると、トレーニングクラスとテストクラスのラベル空間は通常、現実のシナリオでは重複しない。
その結果、既存のメソッドは、見当たらないテストクラスのローカル構造をうまく捉えられません。
この制限を克服するため,本論文では,いくつかの適応ステップにおいて,初期化メタラーナを用いてサブ構造をキャプチャする手法を提案する。
More specifically, (1) we propose a novel framework consisting of a graph meta-learner, which uses GNNs based modules for fast adaptation on graph data, and a step controller for the robustness and generalization of meta-learner; (2) we provide quantitative analysis for the framework and give a graph-dependent upper bound of the generalization error based on our framework; (3) the extensive experiments on real-world datasets demonstrate that our framework gets state-of-the-art results on several few-shot graph classification tasks compared to baselines.
関連論文リスト
- Stochastic Subgraph Neighborhood Pooling for Subgraph Classification [2.1270496914042996]
Subgraph Neighborhood Pooling (SSNP) は、ラベル付けトリックのような計算コストの高い操作をすることなく、サブグラフとその周辺情報を共同で集約する。
実験により、我々のモデルは、トレーニングにおいて最大3倍高速でありながら、最先端の手法(マージンが最大2%)より優れています。
論文 参考訳(メタデータ) (2023-04-17T18:49:18Z) - Similarity-aware Positive Instance Sampling for Graph Contrastive
Pre-training [82.68805025636165]
トレーニングセット内の既存グラフから直接正のグラフインスタンスを選択することを提案する。
私たちの選択は、特定のドメイン固有のペアワイズ類似度測定に基づいています。
さらに,ノードを動的にマスキングしてグラフ上に均等に分配する適応ノードレベルの事前学習手法を開発した。
論文 参考訳(メタデータ) (2022-06-23T20:12:51Z) - A Simple Yet Effective Pretraining Strategy for Graph Few-shot Learning [38.66690010054665]
本稿では,グラフ数ショット学習のための新しいパラダイムとして,シンプルなトランスダクティブな微調整型フレームワークを提案する。
事前学習のために,数発のノード分類に特有なデータ拡張戦略を持つ教師付きコントラスト学習フレームワークを提案する。
論文 参考訳(メタデータ) (2022-03-29T22:30:00Z) - Neural Graph Matching for Pre-training Graph Neural Networks [72.32801428070749]
グラフニューラルネットワーク(GNN)は、構造データのモデリングにおいて強力な能力を示している。
GMPTと呼ばれる新しいグラフマッチングベースのGNN事前学習フレームワークを提案する。
提案手法は,完全自己指導型プレトレーニングと粗粒型プレトレーニングに適用できる。
論文 参考訳(メタデータ) (2022-03-03T09:53:53Z) - Label-informed Graph Structure Learning for Node Classification [16.695269600529056]
本稿では,クラス遷移行列を通じてラベル情報を明示的に組み込んだ新しいグラフ構造学習フレームワークを提案する。
我々は7つのノード分類ベンチマークデータセットについて広範な実験を行い、その結果、我々の手法が最先端のベースラインより優れているか、一致しているかを示した。
論文 参考訳(メタデータ) (2021-08-10T11:14:09Z) - Weakly-supervised Graph Meta-learning for Few-shot Node Classification [53.36828125138149]
新しいグラフメタ学習フレームワーク - Graph Hallucination Networks (Meta-GHN) を提案する。
新たなロバストネス強化エピソードトレーニングに基づいて、Meta-GHNは、弱いラベル付きデータからクリーンノード表現を幻覚させるメタ学習を行う。
大規模な実験は、既存のグラフメタ学習研究よりもMeta-GHNの方が優れていることを示す。
論文 参考訳(メタデータ) (2021-06-12T22:22:10Z) - Structure-Enhanced Meta-Learning For Few-Shot Graph Classification [53.54066611743269]
本研究では,数点グラフ分類の解法のためのメトリベースメタラーニングの可能性を検討する。
SMFGINというGINの実装は、ChemblとTRIANGLESの2つのデータセットでテストされている。
論文 参考訳(メタデータ) (2021-03-05T09:03:03Z) - Model-Agnostic Graph Regularization for Few-Shot Learning [60.64531995451357]
グラフ組み込み数ショット学習に関する包括的な研究を紹介します。
本稿では,ラベル間のグラフ情報の組み込みによる影響をより深く理解できるグラフ正規化手法を提案する。
提案手法は,Mini-ImageNetで最大2%,ImageNet-FSで6.7%の性能向上を実現する。
論文 参考訳(メタデータ) (2021-02-14T05:28:13Z) - Structured Graph Learning for Clustering and Semi-supervised
Classification [74.35376212789132]
データの局所構造とグローバル構造の両方を保存するためのグラフ学習フレームワークを提案する。
本手法は, サンプルの自己表現性を利用して, 局所構造を尊重するために, 大域的構造と適応的隣接アプローチを捉える。
我々のモデルは、ある条件下でのカーネルk平均法とk平均法の組合せと等価である。
論文 参考訳(メタデータ) (2020-08-31T08:41:20Z) - Few-Shot Learning on Graphs via Super-Classes based on Graph Spectral
Measures [14.932318540666545]
グラフニューラルネットワーク (GNN) におけるショットグラフ分類の問題について, 限定ラベル付きグラフの場合, 未確認のクラスを認識するために検討した。
グラフ正規化ラプラシアンのスペクトルに基づいて確率測度を各グラフに割り当てる手法を提案する。
論文 参考訳(メタデータ) (2020-02-27T17:11:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。