Detecting Pancreatic Ductal Adenocarcinoma in Multi-phase CT Scans via
Alignment Ensemble
- URL: http://arxiv.org/abs/2003.08441v3
- Date: Wed, 1 Jul 2020 19:34:38 GMT
- Title: Detecting Pancreatic Ductal Adenocarcinoma in Multi-phase CT Scans via
Alignment Ensemble
- Authors: Yingda Xia, Qihang Yu, Wei Shen, Yuyin Zhou, Elliot K. Fishman, Alan
L. Yuille
- Abstract summary: Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers among the population.
Multiple phases provide more information than single phase, but they are unaligned and inhomogeneous in texture.
We suggest an ensemble of all these alignments as a promising way to boost the performance of PDAC detection.
- Score: 77.5625174267105
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers
among the population. Screening for PDACs in dynamic contrast-enhanced CT is
beneficial for early diagnosis. In this paper, we investigate the problem of
automated detecting PDACs in multi-phase (arterial and venous) CT scans.
Multiple phases provide more information than single phase, but they are
unaligned and inhomogeneous in texture, making it difficult to combine
cross-phase information seamlessly. We study multiple phase alignment
strategies, i.e., early alignment (image registration), late alignment
(high-level feature registration), and slow alignment (multi-level feature
registration), and suggest an ensemble of all these alignments as a promising
way to boost the performance of PDAC detection. We provide an extensive
empirical evaluation on two PDAC datasets and show that the proposed alignment
ensemble significantly outperforms previous state-of-the-art approaches,
illustrating the strong potential for clinical use.
Related papers
- Cross-Phase Mutual Learning Framework for Pulmonary Embolism Identification on Non-Contrast CT Scans [7.732867194190985]
Pulmonary embolism (PE) is a life-threatening condition where rapid and accurate diagnosis is imperative yet difficult due to predominantly atypical symptomatology.
We propose a novel Cross-Phase Mutual learNing framework (CPMN) that fosters knowledge transfer from CTA to NCT scans.
CPMN achieves the leading identification performance, which is 95.4% and 99.6% in patient-level sensitivity and specificity on NCT scans.
arXiv Detail & Related papers (2024-07-16T09:29:33Z) - HGT: A Hierarchical GCN-Based Transformer for Multimodal Periprosthetic
Joint Infection Diagnosis Using CT Images and Text [0.0]
Prosthetic Joint Infection (PJI) is a prevalent and severe complication.
Currently, a unified diagnostic standard incorporating both computed tomography (CT) images and numerical text data for PJI remains unestablished.
This study introduces a diagnostic method, HGT, based on deep learning and multimodal techniques.
arXiv Detail & Related papers (2023-05-29T11:25:57Z) - Longitudinal Multimodal Transformer Integrating Imaging and Latent
Clinical Signatures From Routine EHRs for Pulmonary Nodule Classification [4.002181247287472]
We propose a transformer-based multimodal strategy to integrate repeat imaging with longitudinal clinical signatures from EHRs for solitary pulmonary nodule (SPN) classification.
We perform unsupervised disentanglement of latent clinical signatures and leverage time-distance scaled self-attention to jointly learn from clinical signatures expressions and chest computed tomography (CT) scans.
arXiv Detail & Related papers (2023-04-06T03:03:07Z) - A Dual-scale Lead-seperated Transformer With Lead-orthogonal Attention
And Meta-information For Ecg Classification [26.07181634056045]
This work proposes a dual-scale lead-separated transformer with lead-orthogonal attention and meta-information (DLTM-ECG)
ECG segments are interpreted as independent patches, and together with the reduced dimension signal, they form a dual-scale representation.
Our work has the potential for similar multichannel bioelectrical signal processing and physiological multimodal tasks.
arXiv Detail & Related papers (2022-11-23T08:45:34Z) - Multiple Time Series Fusion Based on LSTM An Application to CAP A Phase
Classification Using EEG [56.155331323304]
Deep learning based electroencephalogram channels' feature level fusion is carried out in this work.
Channel selection, fusion, and classification procedures were optimized by two optimization algorithms.
arXiv Detail & Related papers (2021-12-18T14:17:49Z) - Robust End-to-End Focal Liver Lesion Detection using Unregistered
Multiphase Computed Tomography Images [23.89199023621166]
This study presents a fully automated, end-to-end learning framework for detecting focal liver lesions (FLLs) from CT images.
Our method is robust to misaligned multiphase images owing to its complete learning-based approach.
The robustness of the proposed method can enhance the clinical adoption of the deep-learning-based computer-aided detection system.
arXiv Detail & Related papers (2021-12-02T04:56:59Z) - CyTran: A Cycle-Consistent Transformer with Multi-Level Consistency for
Non-Contrast to Contrast CT Translation [56.622832383316215]
We propose a novel approach to translate unpaired contrast computed tomography (CT) scans to non-contrast CT scans.
Our approach is based on cycle-consistent generative adversarial convolutional transformers, for short, CyTran.
Our empirical results show that CyTran outperforms all competing methods.
arXiv Detail & Related papers (2021-10-12T23:25:03Z) - Dual-Cross Central Difference Network for Face Anti-Spoofing [54.81222020394219]
Face anti-spoofing (FAS) plays a vital role in securing face recognition systems.
Central difference convolution (CDC) has shown its excellent representation capacity for the FAS task.
We propose two Cross Central Difference Convolutions (C-CDC), which exploit the difference of the center and surround sparse local features.
arXiv Detail & Related papers (2021-05-04T05:11:47Z) - Co-Heterogeneous and Adaptive Segmentation from Multi-Source and
Multi-Phase CT Imaging Data: A Study on Pathological Liver and Lesion
Segmentation [48.504790189796836]
We present a novel segmentation strategy, co-heterogenous and adaptive segmentation (CHASe)
We propose a versatile framework that fuses appearance based semi-supervision, mask based adversarial domain adaptation, and pseudo-labeling.
CHASe can further improve pathological liver mask Dice-Sorensen coefficients by ranges of $4.2% sim 9.4%$.
arXiv Detail & Related papers (2020-05-27T06:58:39Z) - Synergistic Learning of Lung Lobe Segmentation and Hierarchical
Multi-Instance Classification for Automated Severity Assessment of COVID-19
in CT Images [61.862364277007934]
We propose a synergistic learning framework for automated severity assessment of COVID-19 in 3D CT images.
A multi-task deep network (called M$2$UNet) is then developed to assess the severity of COVID-19 patients.
Our M$2$UNet consists of a patch-level encoder, a segmentation sub-network for lung lobe segmentation, and a classification sub-network for severity assessment.
arXiv Detail & Related papers (2020-05-08T03:16:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.