Fault Handling in Large Water Networks with Online Dictionary Learning
- URL: http://arxiv.org/abs/2003.08483v2
- Date: Mon, 7 Sep 2020 14:21:46 GMT
- Title: Fault Handling in Large Water Networks with Online Dictionary Learning
- Authors: Paul Irofti and Florin Stoican and Vicen\c{c} Puig
- Abstract summary: Here we simplify the model by offering a data driven alternative that takes the network topology into account when performing sensor placement.
Online learning is fast and allows tackling large networks as it processes small batches of signals at a time.
The algorithms show good performance when tested on both small and large-scale networks.
- Score: 1.933681537640272
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Fault detection and isolation in water distribution networks is an active
topic due to its model's mathematical complexity and increased data
availability through sensor placement. Here we simplify the model by offering a
data driven alternative that takes the network topology into account when
performing sensor placement and then proceeds to build a network model through
online dictionary learning based on the incoming sensor data. Online learning
is fast and allows tackling large networks as it processes small batches of
signals at a time and has the benefit of continuous integration of new data
into the existing network model, be it in the beginning for training or in
production when new data samples are encountered. The algorithms show good
performance when tested on both small and large-scale networks.
Related papers
- Multi-Scale Convolutional LSTM with Transfer Learning for Anomaly Detection in Cellular Networks [1.1432909951914676]
This study introduces a novel approach Multi-Scale Convolutional LSTM with Transfer Learning (TL) to detect anomalies in cellular networks.
The model is initially trained from scratch using a publicly available dataset to learn typical network behavior.
We compare the performance of the model trained from scratch with that of the fine-tuned model using TL.
arXiv Detail & Related papers (2024-09-30T17:51:54Z) - Sampling weights of deep neural networks [1.2370077627846041]
We introduce a probability distribution, combined with an efficient sampling algorithm, for weights and biases of fully-connected neural networks.
In a supervised learning context, no iterative optimization or gradient computations of internal network parameters are needed.
We prove that sampled networks are universal approximators.
arXiv Detail & Related papers (2023-06-29T10:13:36Z) - Network Anomaly Detection Using Federated Learning [0.483420384410068]
We introduce a robust and scalable framework that enables efficient network anomaly detection.
We leverage federated learning, in which multiple participants train a global model jointly.
The proposed method performs better than baseline machine learning techniques on the UNSW-NB15 data set.
arXiv Detail & Related papers (2023-03-13T20:16:30Z) - Learning to Learn with Generative Models of Neural Network Checkpoints [71.06722933442956]
We construct a dataset of neural network checkpoints and train a generative model on the parameters.
We find that our approach successfully generates parameters for a wide range of loss prompts.
We apply our method to different neural network architectures and tasks in supervised and reinforcement learning.
arXiv Detail & Related papers (2022-09-26T17:59:58Z) - Transfer Learning via Test-Time Neural Networks Aggregation [11.42582922543676]
It has been demonstrated that deep neural networks outperform traditional machine learning.
Deep networks lack generalisability, that is, they will not perform as good as in a new (testing) set drawn from a different distribution.
arXiv Detail & Related papers (2022-06-27T15:46:05Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
We show how fully-connected neural networks solving a discrimination task can learn a convolutional structure directly from their inputs.
By carefully designing data models, we show that the emergence of this pattern is triggered by the non-Gaussian, higher-order local structure of the inputs.
arXiv Detail & Related papers (2022-02-01T17:11:13Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
We present a novel contrastive self-supervised learning framework for anomaly detection on attributed networks.
Our framework fully exploits the local information from network data by sampling a novel type of contrastive instance pair.
A graph neural network-based contrastive learning model is proposed to learn informative embedding from high-dimensional attributes and local structure.
arXiv Detail & Related papers (2021-02-27T03:17:20Z) - Intrusion detection in computer systems by using artificial neural
networks with Deep Learning approaches [0.0]
Intrusion detection into computer networks has become one of the most important issues in cybersecurity.
This paper focuses on the design and implementation of an intrusion detection system based on Deep Learning architectures.
arXiv Detail & Related papers (2020-12-15T19:12:23Z) - Towards Accurate Quantization and Pruning via Data-free Knowledge
Transfer [61.85316480370141]
We study data-free quantization and pruning by transferring knowledge from trained large networks to compact networks.
Our data-free compact networks achieve competitive accuracy to networks trained and fine-tuned with training data.
arXiv Detail & Related papers (2020-10-14T18:02:55Z) - On Robustness and Transferability of Convolutional Neural Networks [147.71743081671508]
Modern deep convolutional networks (CNNs) are often criticized for not generalizing under distributional shifts.
We study the interplay between out-of-distribution and transfer performance of modern image classification CNNs for the first time.
We find that increasing both the training set and model sizes significantly improve the distributional shift robustness.
arXiv Detail & Related papers (2020-07-16T18:39:04Z) - Curriculum By Smoothing [52.08553521577014]
Convolutional Neural Networks (CNNs) have shown impressive performance in computer vision tasks such as image classification, detection, and segmentation.
We propose an elegant curriculum based scheme that smoothes the feature embedding of a CNN using anti-aliasing or low-pass filters.
As the amount of information in the feature maps increases during training, the network is able to progressively learn better representations of the data.
arXiv Detail & Related papers (2020-03-03T07:27:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.