Learning to Learn with Generative Models of Neural Network Checkpoints
- URL: http://arxiv.org/abs/2209.12892v1
- Date: Mon, 26 Sep 2022 17:59:58 GMT
- Title: Learning to Learn with Generative Models of Neural Network Checkpoints
- Authors: William Peebles, Ilija Radosavovic, Tim Brooks, Alexei A. Efros,
Jitendra Malik
- Abstract summary: We construct a dataset of neural network checkpoints and train a generative model on the parameters.
We find that our approach successfully generates parameters for a wide range of loss prompts.
We apply our method to different neural network architectures and tasks in supervised and reinforcement learning.
- Score: 71.06722933442956
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We explore a data-driven approach for learning to optimize neural networks.
We construct a dataset of neural network checkpoints and train a generative
model on the parameters. In particular, our model is a conditional diffusion
transformer that, given an initial input parameter vector and a prompted loss,
error, or return, predicts the distribution over parameter updates that achieve
the desired metric. At test time, it can optimize neural networks with unseen
parameters for downstream tasks in just one update. We find that our approach
successfully generates parameters for a wide range of loss prompts. Moreover,
it can sample multimodal parameter solutions and has favorable scaling
properties. We apply our method to different neural network architectures and
tasks in supervised and reinforcement learning.
Related papers
- Scalable Bayesian Inference in the Era of Deep Learning: From Gaussian Processes to Deep Neural Networks [0.5827521884806072]
Large neural networks trained on large datasets have become the dominant paradigm in machine learning.
This thesis develops scalable methods to equip neural networks with model uncertainty.
arXiv Detail & Related papers (2024-04-29T23:38:58Z) - Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
We propose to represent neural networks as computational graphs of parameters.
Our approach enables a single model to encode neural computational graphs with diverse architectures.
We showcase the effectiveness of our method on a wide range of tasks, including classification and editing of implicit neural representations.
arXiv Detail & Related papers (2024-03-18T18:01:01Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
We show how fully-connected neural networks solving a discrimination task can learn a convolutional structure directly from their inputs.
By carefully designing data models, we show that the emergence of this pattern is triggered by the non-Gaussian, higher-order local structure of the inputs.
arXiv Detail & Related papers (2022-02-01T17:11:13Z) - Contextual HyperNetworks for Novel Feature Adaptation [43.49619456740745]
Contextual HyperNetwork (CHN) generates parameters for extending the base model to a new feature.
At prediction time, the CHN requires only a single forward pass through a neural network, yielding a significant speed-up.
We show that this system obtains improved few-shot learning performance for novel features over existing imputation and meta-learning baselines.
arXiv Detail & Related papers (2021-04-12T23:19:49Z) - Measurement error models: from nonparametric methods to deep neural
networks [3.1798318618973362]
We propose an efficient neural network design for estimating measurement error models.
We use a fully connected feed-forward neural network to approximate the regression function $f(x)$.
We conduct an extensive numerical study to compare the neural network approach with classical nonparametric methods.
arXiv Detail & Related papers (2020-07-15T06:05:37Z) - Pre-Trained Models for Heterogeneous Information Networks [57.78194356302626]
We propose a self-supervised pre-training and fine-tuning framework, PF-HIN, to capture the features of a heterogeneous information network.
PF-HIN consistently and significantly outperforms state-of-the-art alternatives on each of these tasks, on four datasets.
arXiv Detail & Related papers (2020-07-07T03:36:28Z) - Modeling from Features: a Mean-field Framework for Over-parameterized
Deep Neural Networks [54.27962244835622]
This paper proposes a new mean-field framework for over- parameterized deep neural networks (DNNs)
In this framework, a DNN is represented by probability measures and functions over its features in the continuous limit.
We illustrate the framework via the standard DNN and the Residual Network (Res-Net) architectures.
arXiv Detail & Related papers (2020-07-03T01:37:16Z) - A Hybrid Objective Function for Robustness of Artificial Neural Networks
-- Estimation of Parameters in a Mechanical System [0.0]
We consider the task of estimating parameters of a mechanical vehicle model based on acceleration profiles.
We introduce a convolutional neural network architecture that is capable to predict the parameters for a family of vehicle models that differ in the unknown parameters.
arXiv Detail & Related papers (2020-04-16T15:06:43Z) - On transfer learning of neural networks using bi-fidelity data for
uncertainty propagation [0.0]
We explore the application of transfer learning techniques using training data generated from both high- and low-fidelity models.
In the former approach, a neural network model mapping the inputs to the outputs of interest is trained based on the low-fidelity data.
The high-fidelity data is then used to adapt the parameters of the upper layer(s) of the low-fidelity network, or train a simpler neural network to map the output of the low-fidelity network to that of the high-fidelity model.
arXiv Detail & Related papers (2020-02-11T15:56:11Z) - Model Fusion via Optimal Transport [64.13185244219353]
We present a layer-wise model fusion algorithm for neural networks.
We show that this can successfully yield "one-shot" knowledge transfer between neural networks trained on heterogeneous non-i.i.d. data.
arXiv Detail & Related papers (2019-10-12T22:07:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.