Hybrid Model For Intrusion Detection Systems
- URL: http://arxiv.org/abs/2003.08585v1
- Date: Thu, 19 Mar 2020 05:52:29 GMT
- Title: Hybrid Model For Intrusion Detection Systems
- Authors: Baha Rababah, Srija Srivastava
- Abstract summary: This project involves analysis of different machine learning algorithms used in intrusion detection systems.
After the analysis of different intrusion detection systems on both the datasets, this project aimed to develop a new hybrid model for intrusion detection systems.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the increasing number of new attacks on ever growing network traffic, it
is becoming challenging to alert immediately any malicious activities to avoid
loss of sensitive data and money. This is making intrusion detection as one of
the major areas of concern in network security. Anomaly based network intrusion
detection technique is one of the most commonly used technique. Depending upon
the dataset used to test those techniques, the accuracy varies. Most of the
times this dataset does not represent the real network traffic. Considering
this, this project involves analysis of different machine learning algorithms
used in intrusion detection systems, when tested upon two datasets which are
similar to current real world network traffic(CICIDS2017) and an improvement of
KDD 99 (NSL-KDD). After the analysis of different intrusion detection systems
on both the datasets, this project aimed to develop a new hybrid model for
intrusion detection systems. This new hybrid approach combines decision tree
and random forest algorithms using stacking scheme to achieve an accuracy of
85.2% and precision of 86.2% for NSL-KDD dataset, and achieve an accuracy of
98% and precision of 98% for CICIDS2017 dataset.
Related papers
- Strengthening Network Intrusion Detection in IoT Environments with Self-Supervised Learning and Few Shot Learning [1.0678175996321808]
The Internet of Things (IoT) has been introduced as a breakthrough technology that integrates intelligence into everyday objects.
As the IoT networks grow and expand, they become more susceptible to cybersecurity attacks.
This paper introduces a novel intrusion detection approach designed to address these challenges.
arXiv Detail & Related papers (2024-06-04T06:30:22Z) - Deep Neural Networks based Meta-Learning for Network Intrusion Detection [0.24466725954625884]
digitization of different components of industry and inter-connectivity among indigenous networks have increased the risk of network attacks.
Data used to construct a predictive model for computer networks has a skewed class distribution and limited representation of attack types.
We propose a novel deep neural network based Meta-Learning framework; INformation FUsion and Stacking Ensemble (INFUSE) for network intrusion detection.
arXiv Detail & Related papers (2023-02-18T18:00:05Z) - A Dependable Hybrid Machine Learning Model for Network Intrusion
Detection [1.222622290392729]
We propose a new hybrid model that combines machine learning and deep learning to increase detection rates while securing dependability.
Our method produces excellent results when tested on two datasets, KDDCUP'99 and CIC-MalMem-2022.
arXiv Detail & Related papers (2022-12-08T20:19:27Z) - RadArnomaly: Protecting Radar Systems from Data Manipulation Attacks [40.736632681576786]
We present a deep learning-based method for detecting anomalies in radar system data streams.
The proposed technique allows the detection of malicious manipulation of critical fields in the data stream.
Our experiments demonstrate the method's high detection accuracy on a variety of data stream manipulation attacks.
arXiv Detail & Related papers (2021-06-13T19:16:37Z) - TANTRA: Timing-Based Adversarial Network Traffic Reshaping Attack [46.79557381882643]
We present TANTRA, a novel end-to-end Timing-based Adversarial Network Traffic Reshaping Attack.
Our evasion attack utilizes a long short-term memory (LSTM) deep neural network (DNN) which is trained to learn the time differences between the target network's benign packets.
TANTRA achieves an average success rate of 99.99% in network intrusion detection system evasion.
arXiv Detail & Related papers (2021-03-10T19:03:38Z) - Uncertainty-Aware Deep Calibrated Salient Object Detection [74.58153220370527]
Existing deep neural network based salient object detection (SOD) methods mainly focus on pursuing high network accuracy.
These methods overlook the gap between network accuracy and prediction confidence, known as the confidence uncalibration problem.
We introduce an uncertaintyaware deep SOD network, and propose two strategies to prevent deep SOD networks from being overconfident.
arXiv Detail & Related papers (2020-12-10T23:28:36Z) - Bayesian Optimization with Machine Learning Algorithms Towards Anomaly
Detection [66.05992706105224]
In this paper, an effective anomaly detection framework is proposed utilizing Bayesian Optimization technique.
The performance of the considered algorithms is evaluated using the ISCX 2012 dataset.
Experimental results show the effectiveness of the proposed framework in term of accuracy rate, precision, low-false alarm rate, and recall.
arXiv Detail & Related papers (2020-08-05T19:29:35Z) - A cognitive based Intrusion detection system [0.0]
Intrusion detection is one of the important mechanisms that provide computer networks security.
This paper proposes a new approach based on Deep Neural Network ans Support vector machine classifier.
The proposed model predicts the attacks with better accuracy for intrusion detection rather similar methods.
arXiv Detail & Related papers (2020-05-19T13:30:30Z) - Contextual-Bandit Anomaly Detection for IoT Data in Distributed
Hierarchical Edge Computing [65.78881372074983]
IoT devices can hardly afford complex deep neural networks (DNN) models, and offloading anomaly detection tasks to the cloud incurs long delay.
We propose and build a demo for an adaptive anomaly detection approach for distributed hierarchical edge computing (HEC) systems.
We show that our proposed approach significantly reduces detection delay without sacrificing accuracy, as compared to offloading detection tasks to the cloud.
arXiv Detail & Related papers (2020-04-15T06:13:33Z) - Machine Learning based Anomaly Detection for 5G Networks [0.0]
This paper proposes SDS (Software Defined Security) as a means to provide an automated, flexible and scalable network defence system.
SDS will harness current advances in machine learning to design a CNN (Convolutional Neural Network) using NAS (Neural Architecture Search) to detect anomalous network traffic.
arXiv Detail & Related papers (2020-03-07T00:17:08Z) - Survey of Network Intrusion Detection Methods from the Perspective of
the Knowledge Discovery in Databases Process [63.75363908696257]
We review the methods that have been applied to network data with the purpose of developing an intrusion detector.
We discuss the techniques used for the capture, preparation and transformation of the data, as well as, the data mining and evaluation methods.
As a result of this literature review, we investigate some open issues which will need to be considered for further research in the area of network security.
arXiv Detail & Related papers (2020-01-27T11:21:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.