A cognitive based Intrusion detection system
- URL: http://arxiv.org/abs/2005.09436v2
- Date: Sun, 12 Jun 2022 07:14:11 GMT
- Title: A cognitive based Intrusion detection system
- Authors: Siamak Parhizkari, Mohammad Bagher Menhaj, Atena Sajedin
- Abstract summary: Intrusion detection is one of the important mechanisms that provide computer networks security.
This paper proposes a new approach based on Deep Neural Network ans Support vector machine classifier.
The proposed model predicts the attacks with better accuracy for intrusion detection rather similar methods.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Intrusion detection is one of the important mechanisms that provide computer
networks security. Due to an increase in attacks and growing dependence upon
other fields such as medicine, commerce, and engineering, offering services
over a network and maintaining network security have become a significant
issue. The purpose of Intrusion Detection Systems (IDS) is to develop models
which are able to distinguish regular communications from abnormal ones, and
take the necessary actions. Among different methods in this field, Artificial
Neural Networks (ANNs) have been widely used. However, ANN-based IDS
encountered two main problems: low detection precision and weak detection
stability. To overcome these problems, this paper proposes a new approach based
on Deep Neural Network ans Support vector machine classifier, which inspired by
"divide and conquer" philosophy. The proposed model predicts the attacks with
better accuracy for intrusion detection rather similar methods. For our
empirical study, we were taking advantage of the KDD99 dataset. Our
experimental results suggest that the new approach enhance to 95.4 percent
classification accuracy.
Related papers
- Multi-agent Reinforcement Learning-based Network Intrusion Detection System [3.4636217357968904]
Intrusion Detection Systems (IDS) play a crucial role in ensuring the security of computer networks.
We propose a novel multi-agent reinforcement learning (RL) architecture, enabling automatic, efficient, and robust network intrusion detection.
Our solution introduces a resilient architecture designed to accommodate the addition of new attacks and effectively adapt to changes in existing attack patterns.
arXiv Detail & Related papers (2024-07-08T09:18:59Z) - Advancing Security in AI Systems: A Novel Approach to Detecting
Backdoors in Deep Neural Networks [3.489779105594534]
backdoors can be exploited by malicious actors on deep neural networks (DNNs) and cloud services for data processing.
Our approach leverages advanced tensor decomposition algorithms to meticulously analyze the weights of pre-trained DNNs and distinguish between backdoored and clean models.
This advancement enhances the security of deep learning and AI in networked systems, providing essential cybersecurity against evolving threats in emerging technologies.
arXiv Detail & Related papers (2024-03-13T03:10:11Z) - X-CBA: Explainability Aided CatBoosted Anomal-E for Intrusion Detection System [2.556190321164248]
Using machine learning (ML) and deep learning (DL) models in Intrusion Detection Systems has led to a trust deficit due to their non-transparent decision-making.
This paper introduces a novel Explainable IDS approach, called X-CBA, that leverages the structural advantages of Graph Neural Networks (GNNs) to effectively process network traffic data.
Our approach achieves high accuracy with 99.47% in threat detection and provides clear, actionable explanations of its analytical outcomes.
arXiv Detail & Related papers (2024-02-01T18:29:16Z) - Effective Intrusion Detection in Highly Imbalanced IoT Networks with
Lightweight S2CGAN-IDS [48.353590166168686]
Internet of Things (IoT) networks contain benign traffic far more than abnormal traffic, with some rare attacks.
Most existing studies have been focused on sacrificing the detection rate of the majority class in order to improve the detection rate of the minority class.
We propose a lightweight framework named S2CGAN-IDS to expand the number of minority categories in both data space and feature space.
arXiv Detail & Related papers (2023-06-06T14:19:23Z) - Leveraging a Probabilistic PCA Model to Understand the Multivariate
Statistical Network Monitoring Framework for Network Security Anomaly
Detection [64.1680666036655]
We revisit anomaly detection techniques based on PCA from a probabilistic generative model point of view.
We have evaluated the mathematical model using two different datasets.
arXiv Detail & Related papers (2023-02-02T13:41:18Z) - Adversarial Machine Learning In Network Intrusion Detection Domain: A
Systematic Review [0.0]
It has been found that deep learning models are vulnerable to data instances that can mislead the model to make incorrect classification decisions.
This survey explores the researches that employ different aspects of adversarial machine learning in the area of network intrusion detection.
arXiv Detail & Related papers (2021-12-06T19:10:23Z) - Increasing the Confidence of Deep Neural Networks by Coverage Analysis [71.57324258813674]
This paper presents a lightweight monitoring architecture based on coverage paradigms to enhance the model against different unsafe inputs.
Experimental results show that the proposed approach is effective in detecting both powerful adversarial examples and out-of-distribution inputs.
arXiv Detail & Related papers (2021-01-28T16:38:26Z) - Experimental Review of Neural-based approaches for Network Intrusion
Management [8.727349339883094]
We provide an experimental-based review of neural-based methods applied to intrusion detection issues.
We offer a complete view of the most prominent neural-based techniques relevant to intrusion detection, including deep-based approaches or weightless neural networks.
Our evaluation quantifies the value of neural networks, particularly when state-of-the-art datasets are used to train the models.
arXiv Detail & Related papers (2020-09-18T18:32:24Z) - Bayesian Optimization with Machine Learning Algorithms Towards Anomaly
Detection [66.05992706105224]
In this paper, an effective anomaly detection framework is proposed utilizing Bayesian Optimization technique.
The performance of the considered algorithms is evaluated using the ISCX 2012 dataset.
Experimental results show the effectiveness of the proposed framework in term of accuracy rate, precision, low-false alarm rate, and recall.
arXiv Detail & Related papers (2020-08-05T19:29:35Z) - Cassandra: Detecting Trojaned Networks from Adversarial Perturbations [92.43879594465422]
In many cases, pre-trained models are sourced from vendors who may have disrupted the training pipeline to insert Trojan behaviors into the models.
We propose a method to verify if a pre-trained model is Trojaned or benign.
Our method captures fingerprints of neural networks in the form of adversarial perturbations learned from the network gradients.
arXiv Detail & Related papers (2020-07-28T19:00:40Z) - Survey of Network Intrusion Detection Methods from the Perspective of
the Knowledge Discovery in Databases Process [63.75363908696257]
We review the methods that have been applied to network data with the purpose of developing an intrusion detector.
We discuss the techniques used for the capture, preparation and transformation of the data, as well as, the data mining and evaluation methods.
As a result of this literature review, we investigate some open issues which will need to be considered for further research in the area of network security.
arXiv Detail & Related papers (2020-01-27T11:21:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.