論文の概要: A Question-Centric Model for Visual Question Answering in Medical
Imaging
- arxiv url: http://arxiv.org/abs/2003.08760v1
- Date: Mon, 2 Mar 2020 10:16:16 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-27 04:03:59.165736
- Title: A Question-Centric Model for Visual Question Answering in Medical
Imaging
- Title(参考訳): 医用画像における視覚的質問応答に関する質問中心モデル
- Authors: Minh H. Vu, Tommy L\"ofstedt, Tufve Nyholm, Raphael Sznitman
- Abstract要約: そこで本稿では,画像の問合せを質問文で行う視覚質問解答手法を提案する。
種々の医用・自然画像データセットを用いた実験により, 提案手法は, 画像特徴と疑問特徴を新しい方法で融合させることで, 従来の手法と同等あるいは高い精度を達成できることが示されている。
- 参考スコア(独自算出の注目度): 3.619444603816032
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep learning methods have proven extremely effective at performing a variety
of medical image analysis tasks. With their potential use in clinical routine,
their lack of transparency has however been one of their few weak points,
raising concerns regarding their behavior and failure modes. While most
research to infer model behavior has focused on indirect strategies that
estimate prediction uncertainties and visualize model support in the input
image space, the ability to explicitly query a prediction model regarding its
image content offers a more direct way to determine the behavior of trained
models. To this end, we present a novel Visual Question Answering approach that
allows an image to be queried by means of a written question. Experiments on a
variety of medical and natural image datasets show that by fusing image and
question features in a novel way, the proposed approach achieves an equal or
higher accuracy compared to current methods.
- Abstract(参考訳): 深層学習法は様々な医用画像解析タスクの実行に極めて効果的であることが証明されている。
臨床ルーチンで使用される可能性があるため、透明性の欠如は数少ない弱点の1つであり、彼らの行動や障害モードに対する懸念を提起している。
モデル動作を推論するほとんどの研究は、予測の不確かさを推定し、入力画像空間におけるモデルサポートを視覚化する間接戦略に焦点を当てているが、その画像内容に関する予測モデルを明示的に照会する能力は、トレーニングされたモデルの振舞いを決定するより直接的な方法を提供する。
そこで本研究では,文字による質問によって画像に質問をすることができる,新たな視覚的質問応答手法を提案する。
様々な医用および自然画像データセットにおける実験により、画像と質問の特徴を新しい方法で融合させることにより、提案手法が現在の手法と同等以上の精度が得られることを示した。
関連論文リスト
- DiffExplainer: Unveiling Black Box Models Via Counterfactual Generation [11.201840101870808]
ブラックボックスモデルに接続した場合に異なる決定を誘導する反ファクト画像を生成することができるエージェントモデルを提案する。
このエージェントモデルを用いることで、ブラックモデルの最終予測に影響を与える影響のあるイメージパターンを明らかにすることができる。
医療予後タスクの厳格な領域におけるアプローチの検証を行った。
論文 参考訳(メタデータ) (2024-06-21T14:27:02Z) - Information Theoretic Text-to-Image Alignment [49.396917351264655]
本稿では,ステア画像生成のための情報理論アライメント尺度を用いた新しい手法を提案する。
提案手法は最先端の手法よりも優れているが,MIを推定するためには事前学習されたデノナイジングネットワークを必要としない。
論文 参考訳(メタデータ) (2024-05-31T12:20:02Z) - Robust and Interpretable Medical Image Classifiers via Concept
Bottleneck Models [49.95603725998561]
本稿では,自然言語の概念を用いた堅牢で解釈可能な医用画像分類器を構築するための新しいパラダイムを提案する。
具体的には、まず臨床概念をGPT-4から検索し、次に視覚言語モデルを用いて潜在画像の特徴を明示的な概念に変換する。
論文 参考訳(メタデータ) (2023-10-04T21:57:09Z) - Causality-Driven One-Shot Learning for Prostate Cancer Grading from MRI [1.049712834719005]
本稿では,画像中の弱い因果信号を学習し,活用する医用画像の自動分類手法を提案する。
我々のフレームワークは畳み込みニューラルネットワークのバックボーンと因果抽出モジュールで構成されている。
本研究は,特徴間の因果関係が,関連情報を識別するモデルの能力を高める上で重要な役割を担っていることを示す。
論文 参考訳(メタデータ) (2023-09-19T16:08:33Z) - TorchEsegeta: Framework for Interpretability and Explainability of
Image-based Deep Learning Models [0.0]
臨床医はしばしば自動画像処理アプローチ、特にディープラーニングに基づく手法の適用に懐疑的である。
本稿では,アルゴリズムの決定に最も影響を及ぼす解剖学的領域を記述することによって,ディープラーニングアルゴリズムの結果の解釈と説明を支援するアプローチを提案する。
ディープラーニングモデルに様々な解釈可能性および説明可能性技術を適用するための統合フレームワークであるTorchEsegetaを提案する。
論文 参考訳(メタデータ) (2021-10-16T01:00:15Z) - Variational Topic Inference for Chest X-Ray Report Generation [102.04931207504173]
医療画像のレポート生成は、作業負荷を減らし、臨床実習における診断を支援することを約束する。
近年の研究では、ディープラーニングモデルが自然画像のキャプションに成功していることが示された。
本稿では,自動レポート生成のための変分トピック推論を提案する。
論文 参考訳(メタデータ) (2021-07-15T13:34:38Z) - Deep Co-Attention Network for Multi-View Subspace Learning [73.3450258002607]
マルチビューサブスペース学習のための深層コアテンションネットワークを提案する。
共通情報と相補情報の両方を敵意で抽出することを目的としている。
特に、新しいクロス再構成損失を使用し、ラベル情報を利用して潜在表現の構築を誘導する。
論文 参考訳(メタデータ) (2021-02-15T18:46:44Z) - Generative Adversarial U-Net for Domain-free Medical Image Augmentation [49.72048151146307]
注釈付き医用画像の不足は、医用画像コンピューティングの分野における最大の課題の1つだ。
本稿では,生成逆U-Netという新しい生成手法を提案する。
当社の新しいモデルは、ドメインフリーで、さまざまな医療画像に汎用性があります。
論文 参考訳(メタデータ) (2021-01-12T23:02:26Z) - Proactive Pseudo-Intervention: Causally Informed Contrastive Learning
For Interpretable Vision Models [103.64435911083432]
PPI(Proactive Pseudo-Intervention)と呼ばれる新しい対照的な学習戦略を提案する。
PPIは、因果関係のない画像の特徴を保護するために積極的に介入する。
また,重要な画像画素を識別するための,因果的に通知された新たなサリエンスマッピングモジュールを考案し,モデル解釈の容易性を示す。
論文 参考訳(メタデータ) (2020-12-06T20:30:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。