Conditional Gaussian Distribution Learning for Open Set Recognition
- URL: http://arxiv.org/abs/2003.08823v4
- Date: Tue, 9 Feb 2021 11:52:11 GMT
- Title: Conditional Gaussian Distribution Learning for Open Set Recognition
- Authors: Xin Sun, Zhenning Yang, Chi Zhang, Guohao Peng, Keck-Voon Ling
- Abstract summary: We propose Conditional Gaussian Distribution Learning (CGDL) for open set recognition.
In addition to detecting unknown samples, this method can also classify known samples by forcing different latent features to approximate different Gaussian models.
Experiments on several standard image reveal that the proposed method significantly outperforms the baseline method and achieves new state-of-the-art results.
- Score: 10.90687687505665
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep neural networks have achieved state-of-the-art performance in a wide
range of recognition/classification tasks. However, when applying deep learning
to real-world applications, there are still multiple challenges. A typical
challenge is that unknown samples may be fed into the system during the testing
phase and traditional deep neural networks will wrongly recognize the unknown
sample as one of the known classes. Open set recognition is a potential
solution to overcome this problem, where the open set classifier should have
the ability to reject unknown samples as well as maintain high classification
accuracy on known classes. The variational auto-encoder (VAE) is a popular
model to detect unknowns, but it cannot provide discriminative representations
for known classification. In this paper, we propose a novel method, Conditional
Gaussian Distribution Learning (CGDL), for open set recognition. In addition to
detecting unknown samples, this method can also classify known samples by
forcing different latent features to approximate different Gaussian models.
Meanwhile, to avoid information hidden in the input vanishing in the middle
layers, we also adopt the probabilistic ladder architecture to extract
high-level abstract features. Experiments on several standard image datasets
reveal that the proposed method significantly outperforms the baseline method
and achieves new state-of-the-art results.
Related papers
- Open Set Recognition for Random Forest [4.266270583680947]
In real-world classification tasks, it is difficult to collect training examples that exhaust all possible classes.
We propose a novel approach to enabling open-set recognition capability for random forest.
The proposed method is validated on both synthetic and real-world datasets.
arXiv Detail & Related papers (2024-08-01T04:21:14Z) - Exploring Diverse Representations for Open Set Recognition [51.39557024591446]
Open set recognition (OSR) requires the model to classify samples that belong to closed sets while rejecting unknown samples during test.
Currently, generative models often perform better than discriminative models in OSR.
We propose a new model, namely Multi-Expert Diverse Attention Fusion (MEDAF), that learns diverse representations in a discriminative way.
arXiv Detail & Related papers (2024-01-12T11:40:22Z) - Activate and Reject: Towards Safe Domain Generalization under Category
Shift [71.95548187205736]
We study a practical problem of Domain Generalization under Category Shift (DGCS)
It aims to simultaneously detect unknown-class samples and classify known-class samples in the target domains.
Compared to prior DG works, we face two new challenges: 1) how to learn the concept of unknown'' during training with only source known-class samples, and 2) how to adapt the source-trained model to unseen environments.
arXiv Detail & Related papers (2023-10-07T07:53:12Z) - Open-Set Recognition with Gradient-Based Representations [16.80077149399317]
We propose to utilize gradient-based representations to train an unknown detector with instances of known classes only.
We show that our gradient-based approach outperforms state-of-the-art methods by up to 11.6% in open-set classification.
arXiv Detail & Related papers (2022-06-16T14:54:12Z) - Conditional Variational Capsule Network for Open Set Recognition [64.18600886936557]
In open set recognition, a classifier has to detect unknown classes that are not known at training time.
Recently proposed Capsule Networks have shown to outperform alternatives in many fields, particularly in image recognition.
In our proposal, during training, capsules features of the same known class are encouraged to match a pre-defined gaussian, one for each class.
arXiv Detail & Related papers (2021-04-19T09:39:30Z) - Learning Open Set Network with Discriminative Reciprocal Points [70.28322390023546]
Open set recognition aims to simultaneously classify samples from predefined classes and identify the rest as 'unknown'
In this paper, we propose a new concept, Reciprocal Point, which is the potential representation of the extra-class space corresponding to each known category.
Based on the bounded space constructed by reciprocal points, the risk of unknown is reduced through multi-category interaction.
arXiv Detail & Related papers (2020-10-31T03:20:31Z) - Open Set Recognition with Conditional Probabilistic Generative Models [51.40872765917125]
We propose Conditional Probabilistic Generative Models (CPGM) for open set recognition.
CPGM can detect unknown samples but also classify known classes by forcing different latent features to approximate conditional Gaussian distributions.
Experiment results on multiple benchmark datasets reveal that the proposed method significantly outperforms the baselines.
arXiv Detail & Related papers (2020-08-12T06:23:49Z) - Few-Shot Open-Set Recognition using Meta-Learning [72.15940446408824]
The problem of open-set recognition is considered.
A new oPen sEt mEta LEaRning (PEELER) algorithm is introduced.
arXiv Detail & Related papers (2020-05-27T23:49:26Z) - One-vs-Rest Network-based Deep Probability Model for Open Set
Recognition [6.85316573653194]
An intelligent self-learning system should be able to differentiate between known and unknown examples.
One-vs-rest networks can provide more informative hidden representations for unknown examples than the commonly used SoftMax layer.
The proposed probability model outperformed the state-of-the art methods in open set classification scenarios.
arXiv Detail & Related papers (2020-04-17T05:24:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.