Open Set Recognition for Random Forest
- URL: http://arxiv.org/abs/2408.02684v1
- Date: Thu, 1 Aug 2024 04:21:14 GMT
- Title: Open Set Recognition for Random Forest
- Authors: Guanchao Feng, Dhruv Desai, Stefano Pasquali, Dhagash Mehta,
- Abstract summary: In real-world classification tasks, it is difficult to collect training examples that exhaust all possible classes.
We propose a novel approach to enabling open-set recognition capability for random forest.
The proposed method is validated on both synthetic and real-world datasets.
- Score: 4.266270583680947
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In many real-world classification or recognition tasks, it is often difficult to collect training examples that exhaust all possible classes due to, for example, incomplete knowledge during training or ever changing regimes. Therefore, samples from unknown/novel classes may be encountered in testing/deployment. In such scenarios, the classifiers should be able to i) perform classification on known classes, and at the same time, ii) identify samples from unknown classes. This is known as open-set recognition. Although random forest has been an extremely successful framework as a general-purpose classification (and regression) method, in practice, it usually operates under the closed-set assumption and is not able to identify samples from new classes when run out of the box. In this work, we propose a novel approach to enabling open-set recognition capability for random forest classifiers by incorporating distance metric learning and distance-based open-set recognition. The proposed method is validated on both synthetic and real-world datasets. The experimental results indicate that the proposed approach outperforms state-of-the-art distance-based open-set recognition methods.
Related papers
- Managing the unknown: a survey on Open Set Recognition and tangential
areas [7.345136916791223]
Open Set Recognition models are capable of detecting unknown classes from samples arriving during the testing phase, while maintaining a good level of performance in the classification of samples belonging to known classes.
This review comprehensively overviews the recent literature related to Open Set Recognition, identifying common practices, limitations, and connections of this field with other machine learning research areas.
Our work also uncovers open problems and suggests several research directions that may motivate and articulate future efforts towards more safe Artificial Intelligence methods.
arXiv Detail & Related papers (2023-12-14T10:08:12Z) - OpenIncrement: A Unified Framework for Open Set Recognition and Deep
Class-Incremental Learning [4.278434830731282]
We introduce a deep class-incremental learning framework integrated with open set recognition.
Our approach refines class-incrementally learned features to adapt them for distance-based open set recognition.
Experimental results validate that our method outperforms state-of-the-art incremental learning techniques.
arXiv Detail & Related papers (2023-10-05T19:08:08Z) - The Devil is in the Wrongly-classified Samples: Towards Unified Open-set
Recognition [61.28722817272917]
Open-set Recognition (OSR) aims to identify test samples whose classes are not seen during the training process.
Recently, Unified Open-set Recognition (UOSR) has been proposed to reject not only unknown samples but also known but wrongly classified samples.
arXiv Detail & Related papers (2023-02-08T11:34:04Z) - Open-Set Recognition with Gradient-Based Representations [16.80077149399317]
We propose to utilize gradient-based representations to train an unknown detector with instances of known classes only.
We show that our gradient-based approach outperforms state-of-the-art methods by up to 11.6% in open-set classification.
arXiv Detail & Related papers (2022-06-16T14:54:12Z) - Open-set Recognition via Augmentation-based Similarity Learning [11.706887820422002]
We propose to detect unknowns (or unseen class samples) through learning pairwise similarities.
We call our method OPG (Open set recognition based on Pseudo unseen data Generation)
arXiv Detail & Related papers (2022-03-24T17:49:38Z) - Conditional Variational Capsule Network for Open Set Recognition [64.18600886936557]
In open set recognition, a classifier has to detect unknown classes that are not known at training time.
Recently proposed Capsule Networks have shown to outperform alternatives in many fields, particularly in image recognition.
In our proposal, during training, capsules features of the same known class are encouraged to match a pre-defined gaussian, one for each class.
arXiv Detail & Related papers (2021-04-19T09:39:30Z) - Learning Open Set Network with Discriminative Reciprocal Points [70.28322390023546]
Open set recognition aims to simultaneously classify samples from predefined classes and identify the rest as 'unknown'
In this paper, we propose a new concept, Reciprocal Point, which is the potential representation of the extra-class space corresponding to each known category.
Based on the bounded space constructed by reciprocal points, the risk of unknown is reduced through multi-category interaction.
arXiv Detail & Related papers (2020-10-31T03:20:31Z) - Open Set Recognition with Conditional Probabilistic Generative Models [51.40872765917125]
We propose Conditional Probabilistic Generative Models (CPGM) for open set recognition.
CPGM can detect unknown samples but also classify known classes by forcing different latent features to approximate conditional Gaussian distributions.
Experiment results on multiple benchmark datasets reveal that the proposed method significantly outperforms the baselines.
arXiv Detail & Related papers (2020-08-12T06:23:49Z) - Open-Set Recognition with Gaussian Mixture Variational Autoencoders [91.3247063132127]
In inference, open-set classification is to either classify a sample into a known class from training or reject it as an unknown class.
We train our model to cooperatively learn reconstruction and perform class-based clustering in the latent space.
Our model achieves more accurate and robust open-set classification results, with an average F1 improvement of 29.5%.
arXiv Detail & Related papers (2020-06-03T01:15:19Z) - Few-Shot Open-Set Recognition using Meta-Learning [72.15940446408824]
The problem of open-set recognition is considered.
A new oPen sEt mEta LEaRning (PEELER) algorithm is introduced.
arXiv Detail & Related papers (2020-05-27T23:49:26Z) - Conditional Gaussian Distribution Learning for Open Set Recognition [10.90687687505665]
We propose Conditional Gaussian Distribution Learning (CGDL) for open set recognition.
In addition to detecting unknown samples, this method can also classify known samples by forcing different latent features to approximate different Gaussian models.
Experiments on several standard image reveal that the proposed method significantly outperforms the baseline method and achieves new state-of-the-art results.
arXiv Detail & Related papers (2020-03-19T14:32:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.