Small-Object Detection in Remote Sensing Images with End-to-End
Edge-Enhanced GAN and Object Detector Network
- URL: http://arxiv.org/abs/2003.09085v5
- Date: Tue, 28 Apr 2020 20:11:11 GMT
- Title: Small-Object Detection in Remote Sensing Images with End-to-End
Edge-Enhanced GAN and Object Detector Network
- Authors: Jakaria Rabbi, Nilanjan Ray, Matthias Schubert, Subir Chowdhury and
Dennis Chao
- Abstract summary: A generative adversarial network (GAN)-based model called enhanced super-resolution GAN (ESRGAN) shows remarkable image enhancement performance.
We propose a new edge-enhanced super-resolution GAN (EESRGAN) to improve the image quality of remote sensing images.
- Score: 9.135036713000513
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The detection performance of small objects in remote sensing images is not
satisfactory compared to large objects, especially in low-resolution and noisy
images. A generative adversarial network (GAN)-based model called enhanced
super-resolution GAN (ESRGAN) shows remarkable image enhancement performance,
but reconstructed images miss high-frequency edge information. Therefore,
object detection performance degrades for small objects on recovered noisy and
low-resolution remote sensing images. Inspired by the success of edge enhanced
GAN (EEGAN) and ESRGAN, we apply a new edge-enhanced super-resolution GAN
(EESRGAN) to improve the image quality of remote sensing images and use
different detector networks in an end-to-end manner where detector loss is
backpropagated into the EESRGAN to improve the detection performance. We
propose an architecture with three components: ESRGAN, Edge Enhancement Network
(EEN), and Detection network. We use residual-in-residual dense blocks (RRDB)
for both the ESRGAN and EEN, and for the detector network, we use the faster
region-based convolutional network (FRCNN) (two-stage detector) and single-shot
multi-box detector (SSD) (one stage detector). Extensive experiments on a
public (car overhead with context) and a self-assembled (oil and gas storage
tank) satellite dataset show superior performance of our method compared to the
standalone state-of-the-art object detectors.
Related papers
- Renormalized Connection for Scale-preferred Object Detection in Satellite Imagery [51.83786195178233]
We design a Knowledge Discovery Network (KDN) to implement the renormalization group theory in terms of efficient feature extraction.
Renormalized connection (RC) on the KDN enables synergistic focusing'' of multi-scale features.
RCs extend the multi-level feature's divide-and-conquer'' mechanism of the FPN-based detectors to a wide range of scale-preferred tasks.
arXiv Detail & Related papers (2024-09-09T13:56:22Z) - D-YOLO a robust framework for object detection in adverse weather conditions [0.0]
Adverse weather conditions including haze, snow and rain lead to decline in image qualities, which often causes a decline in performance for deep-learning based detection networks.
To better integrate image restoration and object detection tasks, we designed a double-route network with an attention feature fusion module.
We also proposed a subnetwork to provide haze-free features to the detection network. Specifically, our D-YOLO improves the performance of the detection network by minimizing the distance between the clear feature extraction subnetwork and detection network.
arXiv Detail & Related papers (2024-03-14T09:57:15Z) - Fast Fourier Convolution Based Remote Sensor Image Object Detection for
Earth Observation [0.0]
We propose a Frequency-aware Feature Pyramid Framework (FFPF) for remote sensing object detection.
F-ResNet is proposed to perceive the spectral context information by plugging the frequency domain convolution into each stage of the backbone.
The BSFPN is designed to use a bilateral sampling strategy and skipping connection to better model the association of object features at different scales.
arXiv Detail & Related papers (2022-09-01T15:50:58Z) - Adversarially-Aware Robust Object Detector [85.10894272034135]
We propose a Robust Detector (RobustDet) based on adversarially-aware convolution to disentangle gradients for model learning on clean and adversarial images.
Our model effectively disentangles gradients and significantly enhances the detection robustness with maintaining the detection ability on clean images.
arXiv Detail & Related papers (2022-07-13T13:59:59Z) - Radar Guided Dynamic Visual Attention for Resource-Efficient RGB Object
Detection [10.983063391496543]
We propose a novel radar-guided spatial attention for RGB images to improve the perception quality of autonomous vehicles.
Our method improves the perception of small and long range objects, which are often not detected by the object detectors in RGB mode.
arXiv Detail & Related papers (2022-06-03T18:29:55Z) - Enhanced Single-shot Detector for Small Object Detection in Remote
Sensing Images [33.84369068593722]
We propose image pyramid single-shot detector (IPSSD) for small-scale object detection.
In IPSSD, single-shot detector is adopted combined with an image pyramid network to extract semantically strong features for generating candidate regions.
The proposed network can enhance the small-scale features from a feature pyramid network.
arXiv Detail & Related papers (2022-05-12T07:35:07Z) - SALISA: Saliency-based Input Sampling for Efficient Video Object
Detection [58.22508131162269]
We propose SALISA, a novel non-uniform SALiency-based Input SAmpling technique for video object detection.
We show that SALISA significantly improves the detection of small objects.
arXiv Detail & Related papers (2022-04-05T17:59:51Z) - Remote Sensing Image Super-resolution and Object Detection: Benchmark
and State of the Art [7.74389937337756]
This paper reviews current datasets and object detection methods (deep learning-based) for remote sensing images.
We propose a large-scale, publicly available benchmark Remote Sensing Super-resolution Object Detection dataset.
We also propose a novel Multi-class Cyclic super-resolution Generative adversarial network with Residual feature aggregation (MCGR) and auxiliary YOLOv5 detector to benchmark image super-resolution-based object detection.
arXiv Detail & Related papers (2021-11-05T04:56:34Z) - RRNet: Relational Reasoning Network with Parallel Multi-scale Attention
for Salient Object Detection in Optical Remote Sensing Images [82.1679766706423]
Salient object detection (SOD) for optical remote sensing images (RSIs) aims at locating and extracting visually distinctive objects/regions from the optical RSIs.
We propose a relational reasoning network with parallel multi-scale attention for SOD in optical RSIs.
Our proposed RRNet outperforms the existing state-of-the-art SOD competitors both qualitatively and quantitatively.
arXiv Detail & Related papers (2021-10-27T07:18:32Z) - EDN: Salient Object Detection via Extremely-Downsampled Network [66.38046176176017]
We introduce an Extremely-Downsampled Network (EDN), which employs an extreme downsampling technique to effectively learn a global view of the whole image.
Experiments demonstrate that EDN achieves sArt performance with real-time speed.
arXiv Detail & Related papers (2020-12-24T04:23:48Z) - Anchor-free Small-scale Multispectral Pedestrian Detection [88.7497134369344]
We propose a method for effective and efficient multispectral fusion of the two modalities in an adapted single-stage anchor-free base architecture.
We aim at learning pedestrian representations based on object center and scale rather than direct bounding box predictions.
Results show our method's effectiveness in detecting small-scaled pedestrians.
arXiv Detail & Related papers (2020-08-19T13:13:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.