D-YOLO a robust framework for object detection in adverse weather conditions
- URL: http://arxiv.org/abs/2403.09233v2
- Date: Wed, 20 Mar 2024 02:38:44 GMT
- Title: D-YOLO a robust framework for object detection in adverse weather conditions
- Authors: Zihan Chu,
- Abstract summary: Adverse weather conditions including haze, snow and rain lead to decline in image qualities, which often causes a decline in performance for deep-learning based detection networks.
To better integrate image restoration and object detection tasks, we designed a double-route network with an attention feature fusion module.
We also proposed a subnetwork to provide haze-free features to the detection network. Specifically, our D-YOLO improves the performance of the detection network by minimizing the distance between the clear feature extraction subnetwork and detection network.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Adverse weather conditions including haze, snow and rain lead to decline in image qualities, which often causes a decline in performance for deep-learning based detection networks. Most existing approaches attempts to rectify hazy images before performing object detection, which increases the complexity of the network and may result in the loss in latent information. To better integrate image restoration and object detection tasks, we designed a double-route network with an attention feature fusion module, taking both hazy and dehazed features into consideration. We also proposed a subnetwork to provide haze-free features to the detection network. Specifically, our D-YOLO improves the performance of the detection network by minimizing the distance between the clear feature extraction subnetwork and detection network. Experiments on RTTS and FoggyCityscapes datasets show that D-YOLO demonstrates better performance compared to the state-of-the-art methods. It is a robust detection framework for bridging the gap between low-level dehazing and high-level detection.
Related papers
- FogGuard: guarding YOLO against fog using perceptual loss [5.868532677577194]
FogGuard is a fog-aware object detection network designed to address the challenges posed by foggy weather conditions.
FogGuard compensates for foggy conditions in the scene by incorporating YOLOv3 as the baseline algorithm.
Our network significantly improves performance, achieving a 69.43% mAP compared to YOLOv3's 57.78% on the RTTS dataset.
arXiv Detail & Related papers (2024-03-13T20:13:25Z) - FriendNet: Detection-Friendly Dehazing Network [24.372610892854283]
We propose an effective architecture that bridges image dehazing and object detection together via guidance information and task-driven learning.
FriendNet aims to deliver both high-quality perception and high detection capacity.
arXiv Detail & Related papers (2024-03-07T12:19:04Z) - DiAD: A Diffusion-based Framework for Multi-class Anomaly Detection [55.48770333927732]
We propose a Difusion-based Anomaly Detection (DiAD) framework for multi-class anomaly detection.
It consists of a pixel-space autoencoder, a latent-space Semantic-Guided (SG) network with a connection to the stable diffusion's denoising network, and a feature-space pre-trained feature extractor.
Experiments on MVTec-AD and VisA datasets demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2023-12-11T18:38:28Z) - Learning Heavily-Degraded Prior for Underwater Object Detection [59.5084433933765]
This paper seeks transferable prior knowledge from detector-friendly images.
It is based on statistical observations that, the heavily degraded regions of detector-friendly (DFUI) and underwater images have evident feature distribution gaps.
Our method with higher speeds and less parameters still performs better than transformer-based detectors.
arXiv Detail & Related papers (2023-08-24T12:32:46Z) - MonoTDP: Twin Depth Perception for Monocular 3D Object Detection in
Adverse Scenes [49.21187418886508]
This paper proposes a monocular 3D detection model designed to perceive twin depth in adverse scenes, termed MonoTDP.
We first introduce an adaptive learning strategy to aid the model in handling uncontrollable weather conditions, significantly resisting degradation caused by various degrading factors.
Then, to address the depth/content loss in adverse regions, we propose a novel twin depth perception module that simultaneously estimates scene and object depth.
arXiv Detail & Related papers (2023-05-18T13:42:02Z) - An Interactively Reinforced Paradigm for Joint Infrared-Visible Image
Fusion and Saliency Object Detection [59.02821429555375]
This research focuses on the discovery and localization of hidden objects in the wild and serves unmanned systems.
Through empirical analysis, infrared and visible image fusion (IVIF) enables hard-to-find objects apparent.
multimodal salient object detection (SOD) accurately delineates the precise spatial location of objects within the picture.
arXiv Detail & Related papers (2023-05-17T06:48:35Z) - Adversarially-Aware Robust Object Detector [85.10894272034135]
We propose a Robust Detector (RobustDet) based on adversarially-aware convolution to disentangle gradients for model learning on clean and adversarial images.
Our model effectively disentangles gradients and significantly enhances the detection robustness with maintaining the detection ability on clean images.
arXiv Detail & Related papers (2022-07-13T13:59:59Z) - Attention Guided Network for Salient Object Detection in Optical Remote
Sensing Images [16.933770557853077]
salient object detection in optical remote sensing images (RSI-SOD) is a very difficult task.
We propose a novel Attention Guided Network (AGNet) for SOD in optical RSIs, including position enhancement stage and detail refinement stage.
AGNet achieves competitive performance compared to other state-of-the-art methods.
arXiv Detail & Related papers (2022-07-05T01:01:03Z) - Target-aware Dual Adversarial Learning and a Multi-scenario
Multi-Modality Benchmark to Fuse Infrared and Visible for Object Detection [65.30079184700755]
This study addresses the issue of fusing infrared and visible images that appear differently for object detection.
Previous approaches discover commons underlying the two modalities and fuse upon the common space either by iterative optimization or deep networks.
This paper proposes a bilevel optimization formulation for the joint problem of fusion and detection, and then unrolls to a target-aware Dual Adversarial Learning (TarDAL) network for fusion and a commonly used detection network.
arXiv Detail & Related papers (2022-03-30T11:44:56Z) - Image-Adaptive YOLO for Object Detection in Adverse Weather Conditions [34.993786158059436]
We propose a novel Image-Adaptive YOLO (IA-YOLO) framework, where each image can be adaptively enhanced for better detection performance.
Specifically, a differentiable image processing (DIP) module is presented to take into account the adverse weather conditions for YOLO detector.
We learn CNN-PP and YOLOv3 jointly in an end-to-end fashion, which ensures CNN-PP can learn an appropriate DIP to enhance the image for detection in a weakly supervised manner.
arXiv Detail & Related papers (2021-12-15T12:54:17Z) - Small-Object Detection in Remote Sensing Images with End-to-End
Edge-Enhanced GAN and Object Detector Network [9.135036713000513]
A generative adversarial network (GAN)-based model called enhanced super-resolution GAN (ESRGAN) shows remarkable image enhancement performance.
We propose a new edge-enhanced super-resolution GAN (EESRGAN) to improve the image quality of remote sensing images.
arXiv Detail & Related papers (2020-03-20T03:07:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.