論文の概要: L2B: Learning to Balance the Safety-Efficiency Trade-off in Interactive
Crowd-aware Robot Navigation
- arxiv url: http://arxiv.org/abs/2003.09207v2
- Date: Wed, 7 Oct 2020 18:30:02 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-21 23:10:58.293542
- Title: L2B: Learning to Balance the Safety-Efficiency Trade-off in Interactive
Crowd-aware Robot Navigation
- Title(参考訳): l2b: 対話型クラウドアウェアロボットナビゲーションにおける安全性と効率のバランスをとるための学習
- Authors: Mai Nishimura, Ryo Yonetani
- Abstract要約: Learning to Balance(L2B)フレームワークにより、モバイルロボットエージェントは、群衆との衝突を避けることにより、目的地に向かって安全に操縦することができる。
観衆を意識したナビゲーションにおける安全性と効率の要件は,エージェントと観衆の間での社会的ジレンマの存在においてトレードオフがあることを観察する。
我々は,我々のL2Bフレームワークを挑戦的な群集シミュレーションで評価し,航法成功率と衝突速度の両方の観点から,最先端の航法アプローチよりも優れていることを示す。
- 参考スコア(独自算出の注目度): 11.893324664457548
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This work presents a deep reinforcement learning framework for interactive
navigation in a crowded place. Our proposed approach, Learning to Balance (L2B)
framework enables mobile robot agents to steer safely towards their
destinations by avoiding collisions with a crowd, while actively clearing a
path by asking nearby pedestrians to make room, if necessary, to keep their
travel efficient. We observe that the safety and efficiency requirements in
crowd-aware navigation have a trade-off in the presence of social dilemmas
between the agent and the crowd. On the one hand, intervening in pedestrian
paths too much to achieve instant efficiency will result in collapsing a
natural crowd flow and may eventually put everyone, including the self, at risk
of collisions. On the other hand, keeping in silence to avoid every single
collision will lead to the agent's inefficient travel. With this observation,
our L2B framework augments the reward function used in learning an interactive
navigation policy to penalize frequent active path clearing and passive
collision avoidance, which substantially improves the balance of the
safety-efficiency trade-off. We evaluate our L2B framework in a challenging
crowd simulation and demonstrate its superiority, in terms of both navigation
success and collision rate, over a state-of-the-art navigation approach.
- Abstract(参考訳): 本研究は,混み合った場所でのインタラクティブナビゲーションのための深層強化学習フレームワークを提案する。
提案手法であるLearning to Balance(L2B)により,移動ロボットエージェントは,群集との衝突を回避し,移動経路を積極的にクリアし,移動を効率よく維持する。
観衆を意識したナビゲーションにおける安全性と効率の要件は,エージェントと観衆の間の社会的ジレンマの存在においてトレードオフがある。
一方、歩行者の経路に介入してすぐに効率を上げることは、自然の群衆の流れを崩壊させ、最終的には自己を含む全員を衝突のリスクに晒すことになる。
一方、あらゆる衝突を避けるために沈黙を維持することは、エージェントの非効率な移動につながる。
この観察により、我々のL2Bフレームワークは、対話的ナビゲーションポリシーの学習に使用される報酬関数を拡張し、頻繁なアクティブパスクリアリングと受動的衝突回避をペナルティ化し、安全性と効率のトレードオフのバランスを大幅に改善する。
我々は,我々のL2Bフレームワークを挑戦的な群集シミュレーションで評価し,航法成功率と衝突速度の両方の観点から,最先端の航法アプローチよりも優れていることを示す。
関連論文リスト
- Robot Navigation with Entity-Based Collision Avoidance using Deep Reinforcement Learning [0.0]
本稿では,ロボットのさまざまなエージェントや障害物との相互作用を高める新しい手法を提案する。
このアプローチでは、エンティティタイプに関する情報を使用し、衝突回避を改善し、より安全なナビゲーションを保証する。
本研究では,大人,自転車乗り,子供,静的障害物など,さまざまな物体との衝突に対してロボットをペナルティ化する新たな報酬関数を提案する。
論文 参考訳(メタデータ) (2024-08-26T11:16:03Z) - Hyp2Nav: Hyperbolic Planning and Curiosity for Crowd Navigation [58.574464340559466]
我々は,群集ナビゲーションを実現するための双曲学習を提唱し,Hyp2Navを紹介した。
Hyp2Navは双曲幾何学の本質的な性質を活用し、ナビゲーションタスクにおける意思決定プロセスの階層的性質をよりよく符号化する。
本稿では, 効果的なソーシャルナビゲーション, 最高の成功率, 複数シミュレーション設定におけるリターンをもたらす, 双曲型ポリシーモデルと双曲型好奇性モジュールを提案する。
論文 参考訳(メタデータ) (2024-07-18T14:40:33Z) - RACER: Epistemic Risk-Sensitive RL Enables Fast Driving with Fewer Crashes [57.319845580050924]
本稿では,リスク感応制御と適応行動空間のカリキュラムを組み合わせた強化学習フレームワークを提案する。
提案アルゴリズムは,現実世界のオフロード運転タスクに対して,高速なポリシーを学習可能であることを示す。
論文 参考訳(メタデータ) (2024-05-07T23:32:36Z) - Belief Aided Navigation using Bayesian Reinforcement Learning for Avoiding Humans in Blind Spots [0.0]
本研究では、部分的に観測可能なマルコフ決定プロセスフレームワークに基づく新しいアルゴリズムBNBRL+を導入し、観測不能領域のリスクを評価する。
ロボット、人間、そして推論された信念のダイナミクスを統合し、ナビゲーションパスを決定し、報酬関数に社会規範を埋め込む。
このモデルでは、視認性に限界があり、障害物を動的に回避できるため、自動運転車の安全性と信頼性を大幅に向上させることができる。
論文 参考訳(メタデータ) (2024-03-15T08:50:39Z) - Evaluation of Safety Constraints in Autonomous Navigation with Deep
Reinforcement Learning [62.997667081978825]
学習可能なナビゲーションポリシとして,セーフとアンセーフの2つを比較します。
安全なポリシは、制約をアカウントに含めますが、もう一方はそうではありません。
安全政策は、よりクリアランスの高い軌道を生成することができ(障害物によらず)、全体的な性能を犠牲にすることなく、トレーニング中に衝突を減らすことができることを示す。
論文 参考訳(メタデータ) (2023-07-27T01:04:57Z) - Deep Reinforcement Learning-Based Mapless Crowd Navigation with
Perceived Risk of the Moving Crowd for Mobile Robots [0.0]
現在最先端のクラウドナビゲーションアプローチは、主に深層強化学習(DRL)に基づくものである。
本研究では,観測空間に衝突確率(CP)を組み込んで,移動する群衆の危険度をロボットに知覚する手法を提案する。
論文 参考訳(メタデータ) (2023-04-07T11:29:59Z) - Multi-task Safe Reinforcement Learning for Navigating Intersections in
Dense Traffic [10.085223486314929]
マルチタスク交差点ナビゲーションは、自動運転にとって依然として困難な課題である。
人間ドライバーにとって、他の対話型車両との交渉スキルは、安全性と効率性を保証する鍵となる。
我々は、他の交通機関の参加者と対話する際の安全性と効率を改善するために、社会的な注意を伴うマルチタスク安全な強化学習を定式化する。
論文 参考訳(メタデータ) (2022-02-19T17:09:46Z) - Learning Interaction-aware Guidance Policies for Motion Planning in
Dense Traffic Scenarios [8.484564880157148]
本稿では,高密度交通シナリオにおける対話型モーションプランニングのための新しい枠組みを提案する。
我々は,他車両の協調性に関する国際的ガイダンスを提供するインタラクション対応政策であるDeep Reinforcement Learning (RL) を通じて学習することを提案する。
学習されたポリシーは、ローカル最適化ベースのプランナーを推論し、対話的な振る舞いで誘導し、他の車両が収まらない場合に安全を維持しながら、密集したトラフィックに積極的にマージする。
論文 参考訳(メタデータ) (2021-07-09T16:43:12Z) - Transferable Deep Reinforcement Learning Framework for Autonomous
Vehicles with Joint Radar-Data Communications [69.24726496448713]
本稿では,AVの最適決定を支援するために,マルコフ決定プロセス(MDP)に基づくインテリジェントな最適化フレームワークを提案する。
そこで我々は,近年の深層強化学習技術を活用した効果的な学習アルゴリズムを開発し,AVの最適方針を見出す。
提案手法は,従来の深部強化学習手法と比較して,AVによる障害物ミス検出確率を最大67%削減することを示す。
論文 参考訳(メタデータ) (2021-05-28T08:45:37Z) - Vision-Based Mobile Robotics Obstacle Avoidance With Deep Reinforcement
Learning [49.04274612323564]
障害物回避は、移動ロボットの自律ナビゲーションのための根本的かつ困難な問題です。
本稿では,ロボットが単一眼カメラにのみ依存しなければならない単純な3D環境における障害物回避の問題を検討する。
データ駆動型エンドツーエンドディープラーニングアプローチとして,障害回避問題に取り組む。
論文 参考訳(メタデータ) (2021-03-08T13:05:46Z) - Language-guided Navigation via Cross-Modal Grounding and Alternate
Adversarial Learning [66.9937776799536]
新たなビジョン・アンド・ランゲージナビゲーション(VLN)問題は、見えない写真リアリスティック環境において、エージェントがターゲットの場所に向かうことを学習することを目的としている。
VLNの主な課題は、主に2つの側面から生じている: まず、エージェントは動的に変化する視覚環境に対応する言語命令の有意義な段落に出席する必要がある。
そこで本稿では,エージェントにテキストと視覚の対応性を追跡する機能を持たせるために,クロスモーダルグラウンドモジュールを提案する。
論文 参考訳(メタデータ) (2020-11-22T09:13:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。