Health State Estimation
- URL: http://arxiv.org/abs/2003.09312v1
- Date: Mon, 16 Mar 2020 21:06:32 GMT
- Title: Health State Estimation
- Authors: Nitish Nag
- Abstract summary: dissertation presents an approach to build a personal model and dynamically estimate the health state of an individual.
The system is stitched together from four essential abstraction elements.
Experiments demonstrate the use of dense and heterogeneous real-world data to monitor individual cardiovascular health state.
- Score: 2.463876252896007
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Life's most valuable asset is health. Continuously understanding the state of
our health and modeling how it evolves is essential if we wish to improve it.
Given the opportunity that people live with more data about their life today
than any other time in history, the challenge rests in interweaving this data
with the growing body of knowledge to compute and model the health state of an
individual continually. This dissertation presents an approach to build a
personal model and dynamically estimate the health state of an individual by
fusing multi-modal data and domain knowledge. The system is stitched together
from four essential abstraction elements: 1. the events in our life, 2. the
layers of our biological systems (from molecular to an organism), 3. the
functional utilities that arise from biological underpinnings, and 4. how we
interact with these utilities in the reality of daily life. Connecting these
four elements via graph network blocks forms the backbone by which we
instantiate a digital twin of an individual. Edges and nodes in this graph
structure are then regularly updated with learning techniques as data is
continuously digested. Experiments demonstrate the use of dense and
heterogeneous real-world data from a variety of personal and environmental
sensors to monitor individual cardiovascular health state. State estimation and
individual modeling is the fundamental basis to depart from disease-oriented
approaches to a total health continuum paradigm. Precision in predicting health
requires understanding state trajectory. By encasing this estimation within a
navigational approach, a systematic guidance framework can plan actions to
transition a current state towards a desired one. This work concludes by
presenting this framework of combining the health state and personal graph
model to perpetually plan and assist us in living life towards our goals.
Related papers
- Graph-Augmented LLMs for Personalized Health Insights: A Case Study in Sleep Analysis [2.303486126296845]
Large Language Models (LLMs) have shown promise in delivering interactive health advice.
Traditional methods like Retrieval-Augmented Generation (RAG) and fine-tuning often fail to fully utilize the complex, multi-dimensional, and temporally relevant data.
This paper introduces a graph-augmented LLM framework designed to significantly enhance the personalization and clarity of health insights.
arXiv Detail & Related papers (2024-06-24T01:22:54Z) - Safe AI for health and beyond -- Monitoring to transform a health
service [51.8524501805308]
We will assess the infrastructure required to monitor the outputs of a machine learning algorithm.
We will present two scenarios with examples of monitoring and updates of models.
arXiv Detail & Related papers (2023-03-02T17:27:45Z) - Towards Neural Numeric-To-Text Generation From Temporal Personal Health
Data [16.814550345738578]
We show that we can automatically generate high-quality natural language summaries from numeric personal health data.
Our work serves as a first step towards the ambitious goal of automatically generating novel and meaningful temporal summaries from personal health data.
arXiv Detail & Related papers (2022-07-11T21:16:48Z) - Practical Challenges in Differentially-Private Federated Survival
Analysis of Medical Data [57.19441629270029]
In this paper, we take advantage of the inherent properties of neural networks to federate the process of training of survival analysis models.
In the realistic setting of small medical datasets and only a few data centers, this noise makes it harder for the models to converge.
We propose DPFed-post which adds a post-processing stage to the private federated learning scheme.
arXiv Detail & Related papers (2022-02-08T10:03:24Z) - Towards Integrative Multi-Modal Personal Health Navigation Systems:
Framework and Application [3.9021888281943173]
We propose a generalized Personal Health Navigation (PHN) framework.
PHN takes individuals towards their personal health goals through a system which perpetually digests data streams.
We test the PHN system in two experiments within the field of cardiology.
arXiv Detail & Related papers (2021-11-16T09:34:54Z) - MIMO: Mutual Integration of Patient Journey and Medical Ontology for
Healthcare Representation Learning [49.57261599776167]
We propose an end-to-end robust Transformer-based solution, Mutual Integration of patient journey and Medical Ontology (MIMO) for healthcare representation learning and predictive analytics.
arXiv Detail & Related papers (2021-07-20T07:04:52Z) - Interpretable machine learning for high-dimensional trajectories of
aging health [0.0]
We have built a computational model for individual aging trajectories of health and survival.
It contains physical, functional, and biological variables, and is conditioned on demographic, lifestyle, and medical background information.
Our model is scalable to large longitudinal data sets and infers an interpretable network of directed interactions between the health variables.
arXiv Detail & Related papers (2021-05-07T17:42:15Z) - Health Status Prediction with Local-Global Heterogeneous Behavior Graph [69.99431339130105]
Estimation of health status can be achieved with various kinds of data streams continuously collected from wearable sensors.
We propose to model the behavior-related multi-source data streams with a local-global graph.
We take experiments on StudentLife dataset, and extensive results demonstrate the effectiveness of our proposed model.
arXiv Detail & Related papers (2021-03-23T11:10:04Z) - MET: Multimodal Perception of Engagement for Telehealth [52.54282887530756]
We present MET, a learning-based algorithm for perceiving a human's level of engagement from videos.
We release a new dataset, MEDICA, for mental health patient engagement detection.
arXiv Detail & Related papers (2020-11-17T15:18:38Z) - Learning Dynamic and Personalized Comorbidity Networks from Event Data
using Deep Diffusion Processes [102.02672176520382]
Comorbid diseases co-occur and progress via complex temporal patterns that vary among individuals.
In electronic health records we can observe the different diseases a patient has, but can only infer the temporal relationship between each co-morbid condition.
We develop deep diffusion processes to model "dynamic comorbidity networks"
arXiv Detail & Related papers (2020-01-08T15:47:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.