Graph-Augmented LLMs for Personalized Health Insights: A Case Study in Sleep Analysis
- URL: http://arxiv.org/abs/2406.16252v2
- Date: Tue, 25 Jun 2024 03:17:40 GMT
- Title: Graph-Augmented LLMs for Personalized Health Insights: A Case Study in Sleep Analysis
- Authors: Ajan Subramanian, Zhongqi Yang, Iman Azimi, Amir M. Rahmani,
- Abstract summary: Large Language Models (LLMs) have shown promise in delivering interactive health advice.
Traditional methods like Retrieval-Augmented Generation (RAG) and fine-tuning often fail to fully utilize the complex, multi-dimensional, and temporally relevant data.
This paper introduces a graph-augmented LLM framework designed to significantly enhance the personalization and clarity of health insights.
- Score: 2.303486126296845
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Health monitoring systems have revolutionized modern healthcare by enabling the continuous capture of physiological and behavioral data, essential for preventive measures and early health intervention. While integrating this data with Large Language Models (LLMs) has shown promise in delivering interactive health advice, traditional methods like Retrieval-Augmented Generation (RAG) and fine-tuning often fail to fully utilize the complex, multi-dimensional, and temporally relevant data from wearable devices. These conventional approaches typically provide limited actionable and personalized health insights due to their inadequate capacity to dynamically integrate and interpret diverse health data streams. In response, this paper introduces a graph-augmented LLM framework designed to significantly enhance the personalization and clarity of health insights. Utilizing a hierarchical graph structure, the framework captures inter and intra-patient relationships, enriching LLM prompts with dynamic feature importance scores derived from a Random Forest Model. The effectiveness of this approach is demonstrated through a sleep analysis case study involving 20 college students during the COVID-19 lockdown, highlighting the potential of our model to generate actionable and personalized health insights efficiently. We leverage another LLM to evaluate the insights for relevance, comprehensiveness, actionability, and personalization, addressing the critical need for models that process and interpret complex health data effectively. Our findings show that augmenting prompts with our framework yields significant improvements in all 4 criteria. Through our framework, we can elicit well-crafted, more thoughtful responses tailored to a specific patient.
Related papers
- Reasoning-Enhanced Healthcare Predictions with Knowledge Graph Community Retrieval [61.70489848327436]
KARE is a novel framework that integrates knowledge graph (KG) community-level retrieval with large language models (LLMs) reasoning.
Extensive experiments demonstrate that KARE outperforms leading models by up to 10.8-15.0% on MIMIC-III and 12.6-12.7% on MIMIC-IV for mortality and readmission predictions.
arXiv Detail & Related papers (2024-10-06T18:46:28Z) - Patient-centered data science: an integrative framework for evaluating and predicting clinical outcomes in the digital health era [0.0]
This study proposes a novel, integrative framework for patient-centered data science in the digital health era.
We developed a multidimensional model that combines traditional clinical data with patient-reported outcomes, social determinants of health, and multi-omic data to create comprehensive digital patient representations.
arXiv Detail & Related papers (2024-07-31T02:36:17Z) - Deep Reinforcement Learning Empowered Activity-Aware Dynamic Health
Monitoring Systems [69.41229290253605]
Existing monitoring approaches were designed on the premise that medical devices track several health metrics concurrently.
This means that they report all relevant health values within that scope, which can result in excess resource use and the gathering of extraneous data.
We propose Dynamic Activity-Aware Health Monitoring strategy (DActAHM) for striking a balance between optimal monitoring performance and cost efficiency.
arXiv Detail & Related papers (2024-01-19T16:26:35Z) - Clairvoyance: A Pipeline Toolkit for Medical Time Series [95.22483029602921]
Time-series learning is the bread and butter of data-driven *clinical decision support*
Clairvoyance proposes a unified, end-to-end, autoML-friendly pipeline that serves as a software toolkit.
Clairvoyance is the first to demonstrate viability of a comprehensive and automatable pipeline for clinical time-series ML.
arXiv Detail & Related papers (2023-10-28T12:08:03Z) - Learnable Weight Initialization for Volumetric Medical Image Segmentation [66.3030435676252]
We propose a learnable weight-based hybrid medical image segmentation approach.
Our approach is easy to integrate into any hybrid model and requires no external training data.
Experiments on multi-organ and lung cancer segmentation tasks demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2023-06-15T17:55:05Z) - Self-Verification Improves Few-Shot Clinical Information Extraction [73.6905567014859]
Large language models (LLMs) have shown the potential to accelerate clinical curation via few-shot in-context learning.
They still struggle with issues regarding accuracy and interpretability, especially in mission-critical domains such as health.
Here, we explore a general mitigation framework using self-verification, which leverages the LLM to provide provenance for its own extraction and check its own outputs.
arXiv Detail & Related papers (2023-05-30T22:05:11Z) - A Self-supervised Framework for Improved Data-Driven Monitoring of
Stress via Multi-modal Passive Sensing [7.084068935028644]
We propose a multi-modal semi-supervised framework for tracking physiological precursors of the stress response.
Our methodology enables utilizing multi-modal data of differing domains and resolutions from wearable devices.
We perform training experiments using a corpus of real-world data on perceived stress.
arXiv Detail & Related papers (2023-03-24T20:34:46Z) - In-Bed Human Pose Estimation from Unseen and Privacy-Preserving Image
Domains [22.92165116962952]
In-bed human posture estimation provides important health-related metrics with potential value in medical condition assessments.
We propose a multi-modal conditional variational autoencoder (MC-VAE) capable of reconstructing features from missing modalities seen during training.
We demonstrate that body positions can be effectively recognized from the available modality, achieving on par results with baseline models.
arXiv Detail & Related papers (2021-11-30T04:56:16Z) - MIMO: Mutual Integration of Patient Journey and Medical Ontology for
Healthcare Representation Learning [49.57261599776167]
We propose an end-to-end robust Transformer-based solution, Mutual Integration of patient journey and Medical Ontology (MIMO) for healthcare representation learning and predictive analytics.
arXiv Detail & Related papers (2021-07-20T07:04:52Z) - Self-Supervised Graph Learning with Hyperbolic Embedding for Temporal
Health Event Prediction [13.24834156675212]
We propose a hyperbolic embedding method with information flow to pre-train medical code representations in a hierarchical structure.
We incorporate these pre-trained representations into a graph neural network to detect disease complications.
We present a new hierarchy-enhanced historical prediction proxy task in our self-supervised learning framework to fully utilize EHR data.
arXiv Detail & Related papers (2021-06-09T00:42:44Z) - Interpretable machine learning for high-dimensional trajectories of
aging health [0.0]
We have built a computational model for individual aging trajectories of health and survival.
It contains physical, functional, and biological variables, and is conditioned on demographic, lifestyle, and medical background information.
Our model is scalable to large longitudinal data sets and infers an interpretable network of directed interactions between the health variables.
arXiv Detail & Related papers (2021-05-07T17:42:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.