Selecting Relevant Features from a Multi-domain Representation for
Few-shot Classification
- URL: http://arxiv.org/abs/2003.09338v2
- Date: Mon, 20 Jul 2020 12:51:34 GMT
- Title: Selecting Relevant Features from a Multi-domain Representation for
Few-shot Classification
- Authors: Nikita Dvornik, Cordelia Schmid, Julien Mairal
- Abstract summary: We propose a new strategy based on feature selection, which is both simpler and more effective than previous feature adaptation approaches.
We show that a simple non-parametric classifier built on top of such features produces high accuracy and generalizes to domains never seen during training.
- Score: 91.67977602992657
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Popular approaches for few-shot classification consist of first learning a
generic data representation based on a large annotated dataset, before adapting
the representation to new classes given only a few labeled samples. In this
work, we propose a new strategy based on feature selection, which is both
simpler and more effective than previous feature adaptation approaches. First,
we obtain a multi-domain representation by training a set of semantically
different feature extractors. Then, given a few-shot learning task, we use our
multi-domain feature bank to automatically select the most relevant
representations. We show that a simple non-parametric classifier built on top
of such features produces high accuracy and generalizes to domains never seen
during training, which leads to state-of-the-art results on MetaDataset and
improved accuracy on mini-ImageNet.
Related papers
- Convolutional autoencoder-based multimodal one-class classification [80.52334952912808]
One-class classification refers to approaches of learning using data from a single class only.
We propose a deep learning one-class classification method suitable for multimodal data.
arXiv Detail & Related papers (2023-09-25T12:31:18Z) - Disambiguation of One-Shot Visual Classification Tasks: A Simplex-Based
Approach [8.436437583394998]
We present a strategy which aims at detecting the presence of multiple objects in a given shot.
This strategy is based on identifying the corners of a simplex in a high dimensional space.
We show the ability of the proposed method to slightly, yet statistically significantly, improve accuracy in extreme settings.
arXiv Detail & Related papers (2023-01-16T11:37:05Z) - A Study on Representation Transfer for Few-Shot Learning [5.717951523323085]
Few-shot classification aims to learn to classify new object categories well using only a few labeled examples.
In this work we perform a systematic study of various feature representations for few-shot classification.
We find that learning from more complex tasks tend to give better representations for few-shot classification.
arXiv Detail & Related papers (2022-09-05T17:56:02Z) - CAD: Co-Adapting Discriminative Features for Improved Few-Shot
Classification [11.894289991529496]
Few-shot classification is a challenging problem that aims to learn a model that can adapt to unseen classes given a few labeled samples.
Recent approaches pre-train a feature extractor, and then fine-tune for episodic meta-learning.
We propose a strategy to cross-attend and re-weight discriminative features for few-shot classification.
arXiv Detail & Related papers (2022-03-25T06:14:51Z) - Hierarchical Variational Memory for Few-shot Learning Across Domains [120.87679627651153]
We introduce a hierarchical prototype model, where each level of the prototype fetches corresponding information from the hierarchical memory.
The model is endowed with the ability to flexibly rely on features at different semantic levels if the domain shift circumstances so demand.
We conduct thorough ablation studies to demonstrate the effectiveness of each component in our model.
arXiv Detail & Related papers (2021-12-15T15:01:29Z) - Multi-dataset Pretraining: A Unified Model for Semantic Segmentation [97.61605021985062]
We propose a unified framework, termed as Multi-Dataset Pretraining, to take full advantage of the fragmented annotations of different datasets.
This is achieved by first pretraining the network via the proposed pixel-to-prototype contrastive loss over multiple datasets.
In order to better model the relationship among images and classes from different datasets, we extend the pixel level embeddings via cross dataset mixing.
arXiv Detail & Related papers (2021-06-08T06:13:11Z) - Universal Representation Learning from Multiple Domains for Few-shot
Classification [41.821234589075445]
We propose to learn a single set of universal deep representations by distilling knowledge of multiple separately trained networks.
We show that the universal representations can be further refined for previously unseen domains by an efficient adaptation step.
arXiv Detail & Related papers (2021-03-25T13:49:12Z) - Meta Learning for Few-Shot One-class Classification [0.0]
We formulate the learning of meaningful features for one-class classification as a meta-learning problem.
To learn these representations, we require only multiclass data from similar tasks.
We validate our approach by adapting few-shot classification datasets to the few-shot one-class classification scenario.
arXiv Detail & Related papers (2020-09-11T11:35:28Z) - Few-shot Classification via Adaptive Attention [93.06105498633492]
We propose a novel few-shot learning method via optimizing and fast adapting the query sample representation based on very few reference samples.
As demonstrated experimentally, the proposed model achieves state-of-the-art classification results on various benchmark few-shot classification and fine-grained recognition datasets.
arXiv Detail & Related papers (2020-08-06T05:52:59Z) - A Few-Shot Sequential Approach for Object Counting [63.82757025821265]
We introduce a class attention mechanism that sequentially attends to objects in the image and extracts their relevant features.
The proposed technique is trained on point-level annotations and uses a novel loss function that disentangles class-dependent and class-agnostic aspects of the model.
We present our results on a variety of object-counting/detection datasets, including FSOD and MS COCO.
arXiv Detail & Related papers (2020-07-03T18:23:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.