CAD: Co-Adapting Discriminative Features for Improved Few-Shot
Classification
- URL: http://arxiv.org/abs/2203.13465v1
- Date: Fri, 25 Mar 2022 06:14:51 GMT
- Title: CAD: Co-Adapting Discriminative Features for Improved Few-Shot
Classification
- Authors: Philip Chikontwe, Soopil Kim, Sang Hyun Park
- Abstract summary: Few-shot classification is a challenging problem that aims to learn a model that can adapt to unseen classes given a few labeled samples.
Recent approaches pre-train a feature extractor, and then fine-tune for episodic meta-learning.
We propose a strategy to cross-attend and re-weight discriminative features for few-shot classification.
- Score: 11.894289991529496
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Few-shot classification is a challenging problem that aims to learn a model
that can adapt to unseen classes given a few labeled samples. Recent approaches
pre-train a feature extractor, and then fine-tune for episodic meta-learning.
Other methods leverage spatial features to learn pixel-level correspondence
while jointly training a classifier. However, results using such approaches
show marginal improvements. In this paper, inspired by the transformer style
self-attention mechanism, we propose a strategy to cross-attend and re-weight
discriminative features for few-shot classification. Given a base
representation of support and query images after global pooling, we introduce a
single shared module that projects features and cross-attends in two aspects:
(i) query to support, and (ii) support to query. The module computes attention
scores between features to produce an attention pooled representation of
features in the same class that is later added to the original representation
followed by a projection head. This effectively re-weights features in both
aspects (i & ii) to produce features that better facilitate improved
metric-based meta-learning. Extensive experiments on public benchmarks show our
approach outperforms state-of-the-art methods by 3%~5%.
Related papers
- Enhancing Few-Shot Image Classification through Learnable Multi-Scale Embedding and Attention Mechanisms [1.1557852082644071]
In the context of few-shot classification, the goal is to train a classifier using a limited number of samples.
Traditional metric-based methods exhibit certain limitations in achieving this objective.
Our approach involves utilizing multi-output embedding network that maps samples into distinct feature spaces.
arXiv Detail & Related papers (2024-09-12T12:34:29Z) - Boosting Few-Shot Segmentation via Instance-Aware Data Augmentation and
Local Consensus Guided Cross Attention [7.939095881813804]
Few-shot segmentation aims to train a segmentation model that can fast adapt to a novel task for which only a few annotated images are provided.
We introduce an instance-aware data augmentation (IDA) strategy that augments the support images based on the relative sizes of the target objects.
The proposed IDA effectively increases the support set's diversity and promotes the distribution consistency between support and query images.
arXiv Detail & Related papers (2024-01-18T10:29:10Z) - Dual Feature Augmentation Network for Generalized Zero-shot Learning [14.410978100610489]
Zero-shot learning (ZSL) aims to infer novel classes without training samples by transferring knowledge from seen classes.
Existing embedding-based approaches for ZSL typically employ attention mechanisms to locate attributes on an image.
We propose a novel Dual Feature Augmentation Network (DFAN), which comprises two feature augmentation modules.
arXiv Detail & Related papers (2023-09-25T02:37:52Z) - Fine-Grained Visual Classification using Self Assessment Classifier [12.596520707449027]
Extracting discriminative features plays a crucial role in the fine-grained visual classification task.
In this paper, we introduce a Self Assessment, which simultaneously leverages the representation of the image and top-k prediction classes.
We show that our method achieves new state-of-the-art results on CUB200-2011, Stanford Dog, and FGVC Aircraft datasets.
arXiv Detail & Related papers (2022-05-21T07:41:27Z) - Learning What Not to Segment: A New Perspective on Few-Shot Segmentation [63.910211095033596]
Recently few-shot segmentation (FSS) has been extensively developed.
This paper proposes a fresh and straightforward insight to alleviate the problem.
In light of the unique nature of the proposed approach, we also extend it to a more realistic but challenging setting.
arXiv Detail & Related papers (2022-03-15T03:08:27Z) - APANet: Adaptive Prototypes Alignment Network for Few-Shot Semantic
Segmentation [56.387647750094466]
Few-shot semantic segmentation aims to segment novel-class objects in a given query image with only a few labeled support images.
Most advanced solutions exploit a metric learning framework that performs segmentation through matching each query feature to a learned class-specific prototype.
We present an adaptive prototype representation by introducing class-specific and class-agnostic prototypes.
arXiv Detail & Related papers (2021-11-24T04:38:37Z) - Multi-scale Adaptive Task Attention Network for Few-Shot Learning [5.861206243996454]
The goal of few-shot learning is to classify unseen categories with few labeled samples.
This paper proposes a novel Multi-scale Adaptive Task Attention Network (MATANet) for few-shot learning.
arXiv Detail & Related papers (2020-11-30T00:36:01Z) - Few-shot Classification via Adaptive Attention [93.06105498633492]
We propose a novel few-shot learning method via optimizing and fast adapting the query sample representation based on very few reference samples.
As demonstrated experimentally, the proposed model achieves state-of-the-art classification results on various benchmark few-shot classification and fine-grained recognition datasets.
arXiv Detail & Related papers (2020-08-06T05:52:59Z) - Prior Guided Feature Enrichment Network for Few-Shot Segmentation [64.91560451900125]
State-of-the-art semantic segmentation methods require sufficient labeled data to achieve good results.
Few-shot segmentation is proposed to tackle this problem by learning a model that quickly adapts to new classes with a few labeled support samples.
Theses frameworks still face the challenge of generalization ability reduction on unseen classes due to inappropriate use of high-level semantic information.
arXiv Detail & Related papers (2020-08-04T10:41:32Z) - Selecting Relevant Features from a Multi-domain Representation for
Few-shot Classification [91.67977602992657]
We propose a new strategy based on feature selection, which is both simpler and more effective than previous feature adaptation approaches.
We show that a simple non-parametric classifier built on top of such features produces high accuracy and generalizes to domains never seen during training.
arXiv Detail & Related papers (2020-03-20T15:44:17Z) - Improving Few-shot Learning by Spatially-aware Matching and
CrossTransformer [116.46533207849619]
We study the impact of scale and location mismatch in the few-shot learning scenario.
We propose a novel Spatially-aware Matching scheme to effectively perform matching across multiple scales and locations.
arXiv Detail & Related papers (2020-01-06T14:10:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.