論文の概要: Visual Navigation Among Humans with Optimal Control as a Supervisor
- arxiv url: http://arxiv.org/abs/2003.09354v2
- Date: Fri, 12 Feb 2021 21:09:24 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-21 21:59:18.547468
- Title: Visual Navigation Among Humans with Optimal Control as a Supervisor
- Title(参考訳): スーパーバイザとしての最適制御による視覚ナビゲーション
- Authors: Varun Tolani, Somil Bansal, Aleksandra Faust, Claire Tomlin
- Abstract要約: そこで本研究では,学習に基づく知覚とモデルに基づく最適制御を組み合わせることで,人間間をナビゲートする手法を提案する。
私たちのアプローチは、新しいデータ生成ツールであるHumANavによって実現されています。
学習したナビゲーションポリシーは、将来の人間の動きを明示的に予測することなく、人間に予測し、反応できることを実証する。
- 参考スコア(独自算出の注目度): 72.5188978268463
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Real world visual navigation requires robots to operate in unfamiliar,
human-occupied dynamic environments. Navigation around humans is especially
difficult because it requires anticipating their future motion, which can be
quite challenging. We propose an approach that combines learning-based
perception with model-based optimal control to navigate among humans based only
on monocular, first-person RGB images. Our approach is enabled by our novel
data-generation tool, HumANav that allows for photorealistic renderings of
indoor environment scenes with humans in them, which are then used to train the
perception module entirely in simulation. Through simulations and experiments
on a mobile robot, we demonstrate that the learned navigation policies can
anticipate and react to humans without explicitly predicting future human
motion, generalize to previously unseen environments and human behaviors, and
transfer directly from simulation to reality. Videos describing our approach
and experiments, as well as a demo of HumANav are available on the project
website.
- Abstract(参考訳): 現実世界のビジュアルナビゲーションでは、ロボットは慣れない人間の慣れ親しんだダイナミックな環境で操作する必要がある。
人間のまわりの航行は、将来の動きを予想する必要があるため、特に難しい。
本稿では,学習に基づく知覚とモデルに基づく最適制御を組み合わせて,単眼のRGB画像のみに基づく人間間のナビゲーションを提案する。
我々のアプローチは、新しいデータ生成ツールであるHumANavによって実現され、室内の環境シーンを人間とリアルにレンダリングし、シミュレーションで完全に知覚モジュールを訓練するために使用される。
移動ロボットのシミュレーションと実験を通じて,学習されたナビゲーションポリシーが,人間の将来の動きを明示的に予測することなく,人間に予測・反応し,これまで認識されていなかった環境や人間の行動に一般化し,シミュレーションから現実へ直接移動できることを実証する。
私たちのアプローチと実験を説明したビデオとHumANavのデモはプロジェクトのWebサイトで公開されている。
関連論文リスト
- CANVAS: Commonsense-Aware Navigation System for Intuitive Human-Robot Interaction [19.997935470257794]
本稿では,コモンセンス認識ナビゲーションのための視覚的および言語的指示を組み合わせたフレームワークであるCANVASを提案する。
その成功は模倣学習によって引き起こされ、ロボットは人間のナビゲーション行動から学ぶことができる。
実験の結果,CANVASはすべての環境において,強力なルールベースシステムであるROS NavStackよりも優れていることがわかった。
論文 参考訳(メタデータ) (2024-10-02T06:34:45Z) - CoNav: A Benchmark for Human-Centered Collaborative Navigation [66.6268966718022]
協調ナビゲーション(CoNav)ベンチマークを提案する。
われわれのCoNavは、現実的で多様な人間の活動を伴う3Dナビゲーション環境を構築するという重要な課題に取り組む。
本研究では,長期的意図と短期的意図の両方を推論する意図認識エージェントを提案する。
論文 参考訳(メタデータ) (2024-06-04T15:44:25Z) - SACSoN: Scalable Autonomous Control for Social Navigation [62.59274275261392]
我々は、社会的に邪魔にならないナビゲーションのための政策の訓練方法を開発した。
この反事実的摂動を最小化することにより、共有空間における人間の自然な振る舞いを変えない方法でロボットに行動を促すことができる。
屋内移動ロボットが人間の傍観者と対話する大規模なデータセットを収集する。
論文 参考訳(メタデータ) (2023-06-02T19:07:52Z) - Learning Human-to-Robot Handovers from Point Clouds [63.18127198174958]
視覚に基づく人間ロボットハンドオーバの制御ポリシーを学習する最初のフレームワークを提案する。
シミュレーションベンチマーク,sim-to-sim転送,sim-to-real転送において,ベースラインよりも大きな性能向上を示した。
論文 参考訳(メタデータ) (2023-03-30T17:58:36Z) - Navigating to Objects in the Real World [76.1517654037993]
本稿では,古典的,モジュール的,エンド・ツー・エンドの学習手法と比較した,意味的視覚ナビゲーション手法に関する大規模な実証的研究について述べる。
モジュラー学習は実世界ではうまく機能し、90%の成功率に達しています。
対照的に、エンド・ツー・エンドの学習は、シミュレーションと現実の間の画像領域の差が大きいため、77%のシミュレーションから23%の実際の成功率へと低下する。
論文 参考訳(メタデータ) (2022-12-02T01:10:47Z) - Gesture2Path: Imitation Learning for Gesture-aware Navigation [54.570943577423094]
Gesture2Pathは、画像に基づく模倣学習とモデル予測制御を組み合わせた新しいソーシャルナビゲーション手法である。
実際のロボットに本手法をデプロイし,4つのジェスチャーナビゲーションシナリオに対するアプローチの有効性を示す。
論文 参考訳(メタデータ) (2022-09-19T23:05:36Z) - Towards self-attention based visual navigation in the real world [0.0]
視覚誘導ナビゲーションでは、タスク指向の意思決定を知らせるために複雑な視覚情報を処理する必要がある。
シミュレーションで訓練された深層強化学習エージェントは、現実世界に配備された時に満足のいく結果を示すことが多い。
これは、4000以下のパラメータを使って3Dアクション空間をナビゲートする訓練に成功した、自己注意型エージェントの最初のデモンストレーションである。
論文 参考訳(メタデータ) (2022-09-15T04:51:42Z) - NavDreams: Towards Camera-Only RL Navigation Among Humans [35.57943738219839]
我々は,アタリゲームにおけるモデリングと学習の方針を示す世界モデルの概念が,カメラによるナビゲーション問題にも適用できるかどうかを考察する。
我々は、ロボットが目標を達成するために衝突することなく、静的で動く人間を通り過ぎなければならないシミュレーション環境を作成する。
現状の手法はナビゲーション問題の解決に成功でき、将来の画像系列の夢のような予測を生成することができる。
論文 参考訳(メタデータ) (2022-03-23T09:46:44Z) - On Embodied Visual Navigation in Real Environments Through Habitat [20.630139085937586]
ディープラーニングに基づくビジュアルナビゲーションモデルは、大量の視覚的観察に基づいてトレーニングされた場合、効果的なポリシーを学ぶことができる。
この制限に対処するため、仮想環境における視覚ナビゲーションポリシーを効率的に訓練するためのシミュレーションプラットフォームがいくつか提案されている。
本研究では,実世界の航法ピソードを走らせることなく,実世界の観測における航法方針の訓練と評価を効果的に行うことができることを示す。
論文 参考訳(メタデータ) (2020-10-26T09:19:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。