論文の概要: One Neuron to Fool Them All
- arxiv url: http://arxiv.org/abs/2003.09372v2
- Date: Tue, 9 Jun 2020 04:35:30 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-21 21:57:14.637996
- Title: One Neuron to Fool Them All
- Title(参考訳): 1つのニューロンが全てをフールする
- Authors: Anshuman Suri and David Evans
- Abstract要約: 我々は、そのニューロンの出力の直接摂動に対するモデル出力の頑健さの観点から、個々のニューロンの感度を評価する。
単一感受性ニューロンのみを標的とする損失関数を用いた攻撃は、完全なモデルをターゲットにしたものと同じくらい効果的に敵の例を見つける。
- 参考スコア(独自算出の注目度): 12.107259467873094
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite vast research in adversarial examples, the root causes of model
susceptibility are not well understood. Instead of looking at attack-specific
robustness, we propose a notion that evaluates the sensitivity of individual
neurons in terms of how robust the model's output is to direct perturbations of
that neuron's output. Analyzing models from this perspective reveals
distinctive characteristics of standard as well as adversarially-trained robust
models, and leads to several curious results. In our experiments on CIFAR-10
and ImageNet, we find that attacks using a loss function that targets just a
single sensitive neuron find adversarial examples nearly as effectively as ones
that target the full model. We analyze the properties of these sensitive
neurons to propose a regularization term that can help a model achieve
robustness to a variety of different perturbation constraints while maintaining
accuracy on natural data distributions. Code for all our experiments is
available at https://github.com/iamgroot42/sauron .
- Abstract(参考訳): 敵対的な例としては膨大な研究があるが、モデル感受性の根本原因はよく分かっていない。
攻撃特異的なロバスト性ではなく、モデルの出力がニューロンの出力を直接摂動することの頑健性の観点から個々のニューロンの感度を評価する概念を提案する。
この視点でモデルを分析すると、標準の特徴と敵対的に訓練された頑健なモデルが明らかとなり、いくつかの興味深い結果をもたらす。
CIFAR-10とImageNetの実験では、単一感度ニューロンを標的とした損失関数を用いた攻撃は、完全なモデルをターゲットにした攻撃とほぼ同等に効果的に敵の例を見出す。
我々はこれらの感度ニューロンの特性を分析し、モデルが自然データ分布の精度を維持しながら様々な摂動制約に頑健性を達成するのに役立つ正規化項を提案する。
すべての実験のコードはhttps://github.com/iamgroot42/sauron.comで公開されている。
関連論文リスト
- The Surprising Harmfulness of Benign Overfitting for Adversarial
Robustness [13.120373493503772]
根拠的真理そのものが敵の例に対して堅牢であるとしても、標準のアウト・オブ・サンプルのリスク目標の観点から見れば、明らかに過適合なモデルは良性である、という驚くべき結果が証明されます。
我々の発見は、実際に観察されたパズリング現象に関する理論的洞察を与え、真の標的関数(例えば、人間)は副次的攻撃に対して堅牢であり、一方、当初過適合のニューラルネットワークは、堅牢でないモデルに導かれる。
論文 参考訳(メタデータ) (2024-01-19T15:40:46Z) - Neural Frailty Machine: Beyond proportional hazard assumption in neural
survival regressions [30.018173329118184]
生存回帰のための強力なフレキシブルなニューラル・モデリング・フレームワークであるニューラル・フラリティ・マシン(NFM)を提案する。
2つの具体的なモデルは、ニューラル比例ハザードモデルと非ハザード回帰モデルを拡張する枠組みに基づいて導出される。
我々は,異なるスケールのベンチマークデータセットを6ドル以上で評価し,提案したNAMモデルは予測性能において最先端サバイバルモデルより優れていることを示す。
論文 参考訳(メタデータ) (2023-03-18T08:15:15Z) - Improving Adversarial Transferability via Neuron Attribution-Based
Attacks [35.02147088207232]
本稿では,より正確なニューロン重要度推定を行う機能レベルアタック(NAA)を提案する。
我々は、オーバーヘッドを大幅に減らすために、ニューロンの属性の近似スキームを導出する。
実験により、最先端のベンチマークに対する我々のアプローチの優位性が確認された。
論文 参考訳(メタデータ) (2022-03-31T13:47:30Z) - Few-shot Backdoor Defense Using Shapley Estimation [123.56934991060788]
我々は、深層ニューラルネットワークに対するバックドア攻撃を軽減するために、Shapley Pruningと呼ばれる新しいアプローチを開発した。
ShapPruningは、感染した数少ないニューロン(全ニューロンの1%以下)を特定し、モデルの構造と正確性を保護する。
様々な攻撃やタスクに対して,本手法の有効性とロバスト性を示す実験を行った。
論文 参考訳(メタデータ) (2021-12-30T02:27:03Z) - Modeling Implicit Bias with Fuzzy Cognitive Maps [0.0]
本稿では、構造化データセットにおける暗黙バイアスを定量化するファジィ認知マップモデルを提案する。
本稿では,ニューロンの飽和を防止する正規化様伝達関数を備えた新しい推論機構を提案する。
論文 参考訳(メタデータ) (2021-12-23T17:04:12Z) - Generalization of Neural Combinatorial Solvers Through the Lens of
Adversarial Robustness [68.97830259849086]
ほとんどのデータセットは単純なサブプロブレムのみをキャプチャし、おそらくは突発的な特徴に悩まされる。
本研究では, 局所的な一般化特性である対向ロバスト性について検討し, 厳密でモデル固有な例と突発的な特徴を明らかにする。
他のアプリケーションとは異なり、摂動モデルは知覚できないという主観的な概念に基づいて設計されているため、摂動モデルは効率的かつ健全である。
驚くべきことに、そのような摂動によって、十分に表現力のあるニューラルソルバは、教師あり学習で共通する正確さと悪質さのトレードオフの限界に悩まされない。
論文 参考訳(メタデータ) (2021-10-21T07:28:11Z) - The Causal Neural Connection: Expressiveness, Learnability, and
Inference [125.57815987218756]
構造因果モデル (Structuor causal model, SCM) と呼ばれるオブジェクトは、調査中のシステムのランダムな変動のメカニズムと源の集合を表す。
本稿では, 因果的階層定理 (Thm. 1, Bareinboim et al., 2020) がまだニューラルモデルに対して成り立っていることを示す。
我々はニューラル因果モデル(NCM)と呼ばれる特殊なタイプのSCMを導入し、因果推論に必要な構造的制約をエンコードする新しいタイプの帰納バイアスを定式化する。
論文 参考訳(メタデータ) (2021-07-02T01:55:18Z) - Non-Singular Adversarial Robustness of Neural Networks [58.731070632586594]
小さな入力摂動に対する過敏性のため、アドリヤルロバスト性はニューラルネットワークにとって新たな課題となっている。
我々は,データ入力とモデル重みの共振レンズを用いて,ニューラルネットワークの非特異な対角性の概念を定式化する。
論文 参考訳(メタデータ) (2021-02-23T20:59:30Z) - And/or trade-off in artificial neurons: impact on adversarial robustness [91.3755431537592]
ネットワークに十分な数のOR様ニューロンが存在すると、分類の脆さと敵の攻撃に対する脆弱性が増加する。
そこで我々は,AND様ニューロンを定義し,ネットワーク内での割合を増大させる対策を提案する。
MNISTデータセットによる実験結果から,本手法はさらなる探索の方向として有望であることが示唆された。
論文 参考訳(メタデータ) (2021-02-15T08:19:05Z) - Firearm Detection via Convolutional Neural Networks: Comparing a
Semantic Segmentation Model Against End-to-End Solutions [68.8204255655161]
武器の脅威検出とライブビデオからの攻撃的な行動は、潜在的に致命的な事故の迅速検出と予防に使用できる。
これを実現する一つの方法は、人工知能と、特に画像分析のための機械学習を使用することです。
従来のモノリシックなエンド・ツー・エンドのディープラーニングモデルと、セマンティクスセグメンテーションによって火花を検知する単純なニューラルネットワークのアンサンブルに基づく前述したモデルを比較した。
論文 参考訳(メタデータ) (2020-12-17T15:19:29Z) - Supervised Autoencoders Learn Robust Joint Factor Models of Neural
Activity [2.8402080392117752]
神経科学の応用は、行動結果とともに異なる領域の脳活動に対応する高次元予測因子を収集する。
予測因子と結果の結合因子モデルは自然であるが、これらのモデルの最大推定値は、モデルが不特定である場合に実際に苦労することがある。
本稿では,教師付きオートエンコーダに基づく代替推論手法を提案する。潜在因子に確率分布を配置するのではなく,高次元予測器の未知関数として定義する。
論文 参考訳(メタデータ) (2020-04-10T19:31:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。