ROAM: Random Layer Mixup for Semi-Supervised Learning in Medical Imaging
- URL: http://arxiv.org/abs/2003.09439v4
- Date: Mon, 16 Nov 2020 22:50:12 GMT
- Title: ROAM: Random Layer Mixup for Semi-Supervised Learning in Medical Imaging
- Authors: Tariq Bdair, Benedikt Wiestler, Nassir Navab, and Shadi Albarqouni
- Abstract summary: Medical image segmentation is one of the major challenges addressed by machine learning methods.
We propose ROAM, a RandOm lAyer Mixup, which generates more data points that have never seen before.
ROAM achieves state-of-the-art (SOTA) results in fully supervised (89.5%) and semi-supervised (87.0%) settings with a relative improvement of up to 2.40% and 16.50%, respectively for the whole-brain segmentation.
- Score: 43.26668942258135
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Medical image segmentation is one of the major challenges addressed by
machine learning methods. Yet, deep learning methods profoundly depend on a
large amount of annotated data, which is time-consuming and costly. Though,
semi-supervised learning methods approach this problem by leveraging an
abundant amount of unlabeled data along with a small amount of labeled data in
the training process. Recently, MixUp regularizer has been successfully
introduced to semi-supervised learning methods showing superior performance.
MixUp augments the model with new data points through linear interpolation of
the data at the input space. We argue that this option is limited. Instead, we
propose ROAM, a RandOm lAyer Mixup, which encourages the network to be less
confident for interpolated data points at randomly selected space. ROAM
generates more data points that have never seen before, and hence it avoids
over-fitting and enhances the generalization ability. We conduct extensive
experiments to validate our method on three publicly available datasets on
whole-brain image segmentation. ROAM achieves state-of-the-art (SOTA) results
in fully supervised (89.5%) and semi-supervised (87.0%) settings with a
relative improvement of up to 2.40% and 16.50%, respectively for the
whole-brain segmentation.
Related papers
- Deep learning-based shot-domain seismic deblending [1.6411821807321063]
We make use of unblended shot gathers acquired at the end of each sail line.
By manually blending these data we obtain training data with good control of the ground truth.
We train a deep neural network using multi-channel inputs that include adjacent blended shot gathers.
arXiv Detail & Related papers (2024-09-13T07:32:31Z) - Inconsistency Masks: Removing the Uncertainty from Input-Pseudo-Label Pairs [0.0]
Inconsistency Masks (IM) is a novel approach that filters uncertainty in image-pseudo-label pairs to substantially enhance segmentation quality.
We achieve strong segmentation results with as little as 10% labeled data, across four diverse datasets.
Three of our hybrid approaches even outperform models trained on the fully labeled dataset.
arXiv Detail & Related papers (2024-01-25T18:46:35Z) - Self-Supervised Neuron Segmentation with Multi-Agent Reinforcement
Learning [53.00683059396803]
Mask image model (MIM) has been widely used due to its simplicity and effectiveness in recovering original information from masked images.
We propose a decision-based MIM that utilizes reinforcement learning (RL) to automatically search for optimal image masking ratio and masking strategy.
Our approach has a significant advantage over alternative self-supervised methods on the task of neuron segmentation.
arXiv Detail & Related papers (2023-10-06T10:40:46Z) - Exploring the Boundaries of Semi-Supervised Facial Expression Recognition using In-Distribution, Out-of-Distribution, and Unconstrained Data [23.4909421082857]
We present a study on 11 of the most recent semi-supervised methods, in the context of facial expression recognition (FER)
Our investigation covers semi-supervised learning from in-distribution, out-of-distribution, unconstrained, and very small unlabelled data.
With an equal number of labelled samples, semi-supervised learning delivers a considerable improvement over supervised learning.
arXiv Detail & Related papers (2023-06-02T01:40:08Z) - Improving Few-Shot Generalization by Exploring and Exploiting Auxiliary
Data [100.33096338195723]
We focus on Few-shot Learning with Auxiliary Data (FLAD)
FLAD assumes access to auxiliary data during few-shot learning in hopes of improving generalization.
We propose two algorithms -- EXP3-FLAD and UCB1-FLAD -- and compare them with prior FLAD methods that either explore or exploit.
arXiv Detail & Related papers (2023-02-01T18:59:36Z) - DoubleMix: Simple Interpolation-Based Data Augmentation for Text
Classification [56.817386699291305]
This paper proposes a simple yet effective data augmentation approach termed DoubleMix.
DoubleMix first generates several perturbed samples for each training data.
It then uses the perturbed data and original data to carry out a two-step in the hidden space of neural models.
arXiv Detail & Related papers (2022-09-12T15:01:04Z) - Mask-based Data Augmentation for Semi-supervised Semantic Segmentation [3.946367634483361]
We propose a new approach for data augmentation, termed ComplexMix, which incorporates aspects of CutMix and ClassMix with improved performance.
The proposed approach has the ability to control the complexity of the augmented data while attempting to be semantically-correct.
Experimental results show that our method yields improvement over state-of-the-art methods on standard datasets for semantic image segmentation.
arXiv Detail & Related papers (2021-01-25T15:09:34Z) - XMixup: Efficient Transfer Learning with Auxiliary Samples by
Cross-domain Mixup [60.07531696857743]
Cross-domain Mixup (XMixup) improves the multitask paradigm for deep transfer learning.
XMixup selects the auxiliary samples from the source dataset and augments training samples via the simple mixup strategy.
Experiment results show that XMixup improves the accuracy by 1.9% on average.
arXiv Detail & Related papers (2020-07-20T16:42:29Z) - Omni-supervised Facial Expression Recognition via Distilled Data [120.11782405714234]
We propose omni-supervised learning to exploit reliable samples in a large amount of unlabeled data for network training.
We experimentally verify that the new dataset can significantly improve the ability of the learned FER model.
To tackle this, we propose to apply a dataset distillation strategy to compress the created dataset into several informative class-wise images.
arXiv Detail & Related papers (2020-05-18T09:36:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.