Self-Supervised Neuron Segmentation with Multi-Agent Reinforcement
Learning
- URL: http://arxiv.org/abs/2310.04148v1
- Date: Fri, 6 Oct 2023 10:40:46 GMT
- Title: Self-Supervised Neuron Segmentation with Multi-Agent Reinforcement
Learning
- Authors: Yinda Chen, Wei Huang, Shenglong Zhou, Qi Chen, Zhiwei Xiong
- Abstract summary: Mask image model (MIM) has been widely used due to its simplicity and effectiveness in recovering original information from masked images.
We propose a decision-based MIM that utilizes reinforcement learning (RL) to automatically search for optimal image masking ratio and masking strategy.
Our approach has a significant advantage over alternative self-supervised methods on the task of neuron segmentation.
- Score: 53.00683059396803
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The performance of existing supervised neuron segmentation methods is highly
dependent on the number of accurate annotations, especially when applied to
large scale electron microscopy (EM) data. By extracting semantic information
from unlabeled data, self-supervised methods can improve the performance of
downstream tasks, among which the mask image model (MIM) has been widely used
due to its simplicity and effectiveness in recovering original information from
masked images. However, due to the high degree of structural locality in EM
images, as well as the existence of considerable noise, many voxels contain
little discriminative information, making MIM pretraining inefficient on the
neuron segmentation task. To overcome this challenge, we propose a
decision-based MIM that utilizes reinforcement learning (RL) to automatically
search for optimal image masking ratio and masking strategy. Due to the vast
exploration space, using single-agent RL for voxel prediction is impractical.
Therefore, we treat each input patch as an agent with a shared behavior policy,
allowing for multi-agent collaboration. Furthermore, this multi-agent model can
capture dependencies between voxels, which is beneficial for the downstream
segmentation task. Experiments conducted on representative EM datasets
demonstrate that our approach has a significant advantage over alternative
self-supervised methods on the task of neuron segmentation. Code is available
at \url{https://github.com/ydchen0806/dbMiM}.
Related papers
- AMMUNet: Multi-Scale Attention Map Merging for Remote Sensing Image Segmentation [4.618389486337933]
We propose AMMUNet, a UNet-based framework that employs multi-scale attention map merging.
The proposed AMMM effectively combines multi-scale attention maps into a unified representation using a fixed mask template.
We show that our approach achieves remarkable mean intersection over union (mIoU) scores of 75.48% on the Vaihingen dataset and an exceptional 77.90% on the Potsdam dataset.
arXiv Detail & Related papers (2024-04-20T15:23:15Z) - Adaptive Affinity-Based Generalization For MRI Imaging Segmentation Across Resource-Limited Settings [1.5703963908242198]
This paper introduces a novel relation-based knowledge framework by seamlessly combining adaptive affinity-based and kernel-based distillation.
To validate our innovative approach, we conducted experiments on publicly available multi-source prostate MRI data.
arXiv Detail & Related papers (2024-04-03T13:35:51Z) - Rotated Multi-Scale Interaction Network for Referring Remote Sensing Image Segmentation [63.15257949821558]
Referring Remote Sensing Image (RRSIS) is a new challenge that combines computer vision and natural language processing.
Traditional Referring Image (RIS) approaches have been impeded by the complex spatial scales and orientations found in aerial imagery.
We introduce the Rotated Multi-Scale Interaction Network (RMSIN), an innovative approach designed for the unique demands of RRSIS.
arXiv Detail & Related papers (2023-12-19T08:14:14Z) - Heterogenous Memory Augmented Neural Networks [84.29338268789684]
We introduce a novel heterogeneous memory augmentation approach for neural networks.
By introducing learnable memory tokens with attention mechanism, we can effectively boost performance without huge computational overhead.
We show our approach on various image and graph-based tasks under both in-distribution (ID) and out-of-distribution (OOD) conditions.
arXiv Detail & Related papers (2023-10-17T01:05:28Z) - MA2CL:Masked Attentive Contrastive Learning for Multi-Agent
Reinforcement Learning [128.19212716007794]
We propose an effective framework called textbfMulti-textbfAgent textbfMasked textbfAttentive textbfContrastive textbfLearning (MA2CL)
MA2CL encourages learning representation to be both temporal and agent-level predictive by reconstructing the masked agent observation in latent space.
Our method significantly improves the performance and sample efficiency of different MARL algorithms and outperforms other methods in various vision-based and state-based scenarios.
arXiv Detail & Related papers (2023-06-03T05:32:19Z) - Masked Autoencoding for Scalable and Generalizable Decision Making [93.84855114717062]
MaskDP is a simple and scalable self-supervised pretraining method for reinforcement learning and behavioral cloning.
We find that a MaskDP model gains the capability of zero-shot transfer to new BC tasks, such as single and multiple goal reaching.
arXiv Detail & Related papers (2022-11-23T07:04:41Z) - Multi-Pretext Attention Network for Few-shot Learning with
Self-supervision [37.6064643502453]
We propose a novel augmentation-free method for self-supervised learning, which does not rely on any auxiliary sample.
Besides, we propose Multi-pretext Attention Network (MAN), which exploits a specific attention mechanism to combine the traditional augmentation-relied methods and our GC.
We evaluate our MAN extensively on miniImageNet and tieredImageNet datasets and the results demonstrate that the proposed method outperforms the state-of-the-art (SOTA) relevant methods.
arXiv Detail & Related papers (2021-03-10T10:48:37Z) - Self-Supervised Multimodal Domino: in Search of Biomarkers for
Alzheimer's Disease [19.86082635340699]
We propose a taxonomy of all reasonable ways to organize self-supervised representation-learning algorithms.
We first evaluate models on toy multimodal MNIST datasets and then apply them to a multimodal neuroimaging dataset with Alzheimer's disease patients.
Results show that the proposed approach outperforms previous self-supervised encoder-decoder methods.
arXiv Detail & Related papers (2020-12-25T20:28:13Z) - Statistical control for spatio-temporal MEG/EEG source imaging with
desparsified multi-task Lasso [102.84915019938413]
Non-invasive techniques like magnetoencephalography (MEG) or electroencephalography (EEG) offer promise of non-invasive techniques.
The problem of source localization, or source imaging, poses however a high-dimensional statistical inference challenge.
We propose an ensemble of desparsified multi-task Lasso (ecd-MTLasso) to deal with this problem.
arXiv Detail & Related papers (2020-09-29T21:17:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.