論文の概要: Intelligent multiscale simulation based on process-guided composite
database
- arxiv url: http://arxiv.org/abs/2003.09491v1
- Date: Fri, 20 Mar 2020 20:39:19 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-21 23:08:58.891468
- Title: Intelligent multiscale simulation based on process-guided composite
database
- Title(参考訳): プロセス誘導複合データベースに基づくインテリジェントマルチスケールシミュレーション
- Authors: Zeliang Liu, Haoyan Wei, Tianyu Huang, C.T. Wu
- Abstract要約: 本稿では、プロセスモデリング、材料均質化、機械学習に基づく統合データ駆動モデリングフレームワークを提案する。
我々は, 自動車, 航空宇宙, エレクトロニクス産業において重要な材料システムとして認識されてきた, 射出成形した短繊維強化複合材料に興味を持っている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the paper, we present an integrated data-driven modeling framework based
on process modeling, material homogenization, mechanistic machine learning, and
concurrent multiscale simulation. We are interested in the injection-molded
short fiber reinforced composites, which have been identified as key material
systems in automotive, aerospace, and electronics industries. The molding
process induces spatially varying microstructures across various length scales,
while the resulting strongly anisotropic and nonlinear material properties are
still challenging to be captured by conventional modeling approaches. To
prepare the linear elastic training data for our machine learning tasks,
Representative Volume Elements (RVE) with different fiber orientations and
volume fractions are generated through stochastic reconstruction. More
importantly, we utilize the recently proposed Deep Material Network (DMN) to
learn the hidden microscale morphologies from data. With essential physics
embedded in its building blocks, this data-driven material model can be
extrapolated to predict nonlinear material behaviors efficiently and
accurately. Through the transfer learning of DMN, we create a unified
process-guided material database that covers a full range of geometric
descriptors for short fiber reinforced composites. Finally, this unified DMN
database is implemented and coupled with macroscale finite element model to
enable concurrent multiscale simulations. From our perspective, the proposed
framework is also promising in many other emergent multiscale engineering
systems, such as additive manufacturing and compressive molding.
- Abstract(参考訳): 本稿では,プロセスモデリング,材料均質化,メカニスティック機械学習,並列マルチスケールシミュレーションに基づく統合データ駆動モデリングフレームワークを提案する。
我々は, 自動車, 航空宇宙, エレクトロニクス産業において重要な材料システムとして認識されてきた, 射出成形した短繊維強化複合材料に興味を持っている。
成形過程は様々な長さスケールにわたって空間的変化を誘導するが, 従来のモデリング手法では, 強異方性および非線形材料特性の把握が困難である。
機械学習タスクのための線形弾性トレーニングデータを作成するために、確率的再構成により、繊維配向と体積率の異なる代表ボリューム要素(rve)を生成する。
さらに,最近提案する深層物質ネットワーク(dmn)を用いて,データから隠れたマイクロスケール形態を学習する。
ビルディングブロックに本質的な物理が組み込まれているため、このデータ駆動材料モデルは、非線形材料挙動を効率的に正確に予測するために外挿することができる。
DMNの転写学習を通じて,短繊維強化複合材料のための全範囲の幾何学的記述子をカバーする統一的なプロセス誘導材料データベースを作成する。
最後に、この統合DMNデータベースをマクロスケール有限要素モデルと組み合わせて実装し、同時マルチスケールシミュレーションを実現する。
我々の見方では、このフレームワークは、添加性製造や圧縮成形など、他の多くの創発的なマルチスケールエンジニアリングシステムでも有望である。
関連論文リスト
- Efficient Symmetry-Aware Materials Generation via Hierarchical Generative Flow Networks [52.13486402193811]
新しい固体材料は、結晶構造の広大な空間を急速に探索し、安定した領域を探索する必要がある。
既存の手法では、大きな材料空間を探索し、望ましい特性と要求を持った多様なサンプルを生成するのに苦労している。
本研究では, 材料空間の対称性を効果的に活用し, 所望の特性を持つ結晶構造を生成するために, 階層的探索戦略を用いた新しい生成モデルを提案する。
論文 参考訳(メタデータ) (2024-11-06T23:53:34Z) - Scalable Diffusion for Materials Generation [99.71001883652211]
我々は任意の結晶構造(ユニマット)を表現できる統一された結晶表現を開発する。
UniMatはより大型で複雑な化学系から高忠実度結晶構造を生成することができる。
材料の生成モデルを評価するための追加指標を提案する。
論文 参考訳(メタデータ) (2023-10-18T15:49:39Z) - DA-VEGAN: Differentiably Augmenting VAE-GAN for microstructure
reconstruction from extremely small data sets [110.60233593474796]
DA-VEGANは2つの中心的なイノベーションを持つモデルである。
$beta$-variational autoencoderはハイブリッドGANアーキテクチャに組み込まれている。
このアーキテクチャに特化して、独自の差別化可能なデータ拡張スキームが開発されている。
論文 参考訳(メタデータ) (2023-02-17T08:49:09Z) - LS-DYNA Machine Learning-based Multiscale Method for Nonlinear Modeling
of Short Fiber-Reinforced Composites [7.891561501854125]
短繊維強化複合材料(英: short-fiber-reinforceed Composites、SFRC)は、自動車やエレクトロニクス産業における軽量構造応用のための高性能な工学材料である。
本研究では, 射出成形による微細構造, 材料均質化, 深層材料ネットワーク(DMN)を統合し, SFRCの構造解析を行う機械学習によるマルチスケール手法を提案する。
論文 参考訳(メタデータ) (2023-01-06T22:33:19Z) - Data-driven multi-scale modeling and robust optimization of composite
structure with uncertainty quantification [0.42581756453559755]
この章では、先進的なデータ駆動手法を示し、先進的な複合材料をマルチスケールでモデリングするために開発・追加する能力について概説する。
代理モデル/エミュレータによって駆動される有限要素法(FEM)シミュレーションに基づく複合構造物のマルチスケールモデリング手法を提案する。
論文 参考訳(メタデータ) (2022-10-13T16:40:11Z) - Enhancing Mechanical Metamodels with a Generative Model-Based Augmented
Training Dataset [0.7734726150561089]
組織の機械的挙動を定義する上で重要な役割を果たしているミクロ構造パターンをシミュレートすることは困難である。
本研究では,限られた入力パターンデータセットを増大させるツールとして,機械学習に基づく生成モデルの有効性について検討する。
Cahn-Hilliardパターンに基づく有限要素解析シミュレーションのオープンアクセスデータセットを作成しました。
論文 参考訳(メタデータ) (2022-03-08T16:15:54Z) - How to See Hidden Patterns in Metamaterials with Interpretable Machine
Learning [82.67551367327634]
我々は,材料単位セルのパターンを見つけるための,解釈可能な多分解能機械学習フレームワークを開発した。
具体的には、形状周波数特徴と単位セルテンプレートと呼ばれるメタマテリアルの2つの新しい解釈可能な表現を提案する。
論文 参考訳(メタデータ) (2021-11-10T21:19:02Z) - Cell division in deep material networks applied to multiscale strain
localization modeling [0.0]
deep material networks(dmn)は、ビルディングブロックに組み込みメカニクスを持つ機械学習モデルである。
ネットワーク上のスケール遷移を追跡するために新しいセル分割スキームが提案され、その一貫性は適合パラメータの物理によって保証される。
細胞中の新たな亀裂表面は凝集層を豊かにすることでモデル化され、亀裂発生と進化のために障害アルゴリズムが開発されている。
論文 参考訳(メタデータ) (2021-01-18T18:24:51Z) - Deep Generative Modeling for Mechanistic-based Learning and Design of
Metamaterial Systems [20.659457956055366]
深部生成モデルに基づく新しいデータ駆動メタマテリアル設計フレームワークを提案する。
本研究では,VAEの潜伏空間が,形状類似度を測定するための距離メートル法を提供することを示す。
機能的グレードとヘテロジニアスなメタマテリアルシステムの両方を設計することで、我々のフレームワークを実証する。
論文 参考訳(メタデータ) (2020-06-27T03:56:55Z) - Predictive modeling approaches in laser-based material processing [59.04160452043105]
本研究の目的は,レーザー加工が材料構造に及ぼす影響を自動予測することである。
その焦点は、統計的および機械学習の代表的なアルゴリズムのパフォーマンスに焦点を当てている。
結果は、材料設計、テスト、生産コストを削減するための体系的な方法論の基礎を設定することができる。
論文 参考訳(メタデータ) (2020-06-13T17:28:52Z) - Learning Bijective Feature Maps for Linear ICA [73.85904548374575]
画像データに適した既存の確率的深層生成モデル (DGM) は, 非線形ICAタスクでは不十分であることを示す。
そこで本研究では,2次元特徴写像と線形ICAモデルを組み合わせることで,高次元データに対する解釈可能な潜在構造を学習するDGMを提案する。
画像上のフローベースモデルや線形ICA、変分オートエンコーダよりも、高速に収束し、訓練が容易なモデルを作成し、教師なしの潜在因子発見を実現する。
論文 参考訳(メタデータ) (2020-02-18T17:58:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。