Deep Reinforcement Learning with Robust and Smooth Policy
- URL: http://arxiv.org/abs/2003.09534v4
- Date: Sat, 15 Aug 2020 02:20:17 GMT
- Title: Deep Reinforcement Learning with Robust and Smooth Policy
- Authors: Qianli Shen, Yan Li, Haoming Jiang, Zhaoran Wang, Tuo Zhao
- Abstract summary: We propose to learn a smooth policy that behaves smoothly with respect to states.
We develop a new framework -- textbfSmooth textbfRegularized textbfReinforcement textbfLearning ($textbfSR2textbfL$), where the policy is trained with smoothness-inducing regularization.
Such regularization effectively constrains the search space, and enforces smoothness in the learned policy.
- Score: 90.78795857181727
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep reinforcement learning (RL) has achieved great empirical successes in
various domains. However, the large search space of neural networks requires a
large amount of data, which makes the current RL algorithms not sample
efficient. Motivated by the fact that many environments with continuous state
space have smooth transitions, we propose to learn a smooth policy that behaves
smoothly with respect to states. We develop a new framework -- \textbf{S}mooth
\textbf{R}egularized \textbf{R}einforcement \textbf{L}earning
($\textbf{SR}^2\textbf{L}$), where the policy is trained with
smoothness-inducing regularization. Such regularization effectively constrains
the search space, and enforces smoothness in the learned policy. Moreover, our
proposed framework can also improve the robustness of policy against
measurement error in the state space, and can be naturally extended to
distribubutionally robust setting. We apply the proposed framework to both
on-policy (TRPO) and off-policy algorithm (DDPG). Through extensive
experiments, we demonstrate that our method achieves improved sample efficiency
and robustness.
Related papers
- Supported Trust Region Optimization for Offline Reinforcement Learning [59.43508325943592]
We propose Supported Trust Region optimization (STR) which performs trust region policy optimization with the policy constrained within the support of the behavior policy.
We show that, when assuming no approximation and sampling error, STR guarantees strict policy improvement until convergence to the optimal support-constrained policy in the dataset.
arXiv Detail & Related papers (2023-11-15T13:16:16Z) - Robust Multi-Agent Reinforcement Learning via Adversarial
Regularization: Theoretical Foundation and Stable Algorithms [79.61176746380718]
Multi-Agent Reinforcement Learning (MARL) has shown promising results across several domains.
MARL policies often lack robustness and are sensitive to small changes in their environment.
We show that we can gain robustness by controlling a policy's Lipschitz constant.
We propose a new robust MARL framework, ERNIE, that promotes the Lipschitz continuity of the policies.
arXiv Detail & Related papers (2023-10-16T20:14:06Z) - A Regularized Implicit Policy for Offline Reinforcement Learning [54.7427227775581]
offline reinforcement learning enables learning from a fixed dataset, without further interactions with the environment.
We propose a framework that supports learning a flexible yet well-regularized fully-implicit policy.
Experiments and ablation study on the D4RL dataset validate our framework and the effectiveness of our algorithmic designs.
arXiv Detail & Related papers (2022-02-19T20:22:04Z) - Learning Optimal Antenna Tilt Control Policies: A Contextual Linear
Bandit Approach [65.27783264330711]
Controlling antenna tilts in cellular networks is imperative to reach an efficient trade-off between network coverage and capacity.
We devise algorithms learning optimal tilt control policies from existing data.
We show that they can produce optimal tilt update policy using much fewer data samples than naive or existing rule-based learning algorithms.
arXiv Detail & Related papers (2022-01-06T18:24:30Z) - MUSBO: Model-based Uncertainty Regularized and Sample Efficient Batch
Optimization for Deployment Constrained Reinforcement Learning [108.79676336281211]
Continuous deployment of new policies for data collection and online learning is either cost ineffective or impractical.
We propose a new algorithmic learning framework called Model-based Uncertainty regularized and Sample Efficient Batch Optimization.
Our framework discovers novel and high quality samples for each deployment to enable efficient data collection.
arXiv Detail & Related papers (2021-02-23T01:30:55Z) - Escaping from Zero Gradient: Revisiting Action-Constrained Reinforcement
Learning via Frank-Wolfe Policy Optimization [5.072893872296332]
Action-constrained reinforcement learning (RL) is a widely-used approach in various real-world applications.
We propose a learning algorithm that decouples the action constraints from the policy parameter update.
We show that the proposed algorithm significantly outperforms the benchmark methods on a variety of control tasks.
arXiv Detail & Related papers (2021-02-22T14:28:03Z) - Robust Reinforcement Learning using Least Squares Policy Iteration with
Provable Performance Guarantees [3.8073142980733]
This paper addresses the problem of model-free reinforcement learning for Robust Markov Decision Process (RMDP) with large state spaces.
We first propose the Robust Least Squares Policy Evaluation algorithm, which is a multi-step online model-free learning algorithm for policy evaluation.
We then propose Robust Least Squares Policy Iteration (RLSPI) algorithm for learning the optimal robust policy.
arXiv Detail & Related papers (2020-06-20T16:26:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.