Robust Reinforcement Learning using Least Squares Policy Iteration with
Provable Performance Guarantees
- URL: http://arxiv.org/abs/2006.11608v4
- Date: Thu, 11 Feb 2021 21:08:12 GMT
- Title: Robust Reinforcement Learning using Least Squares Policy Iteration with
Provable Performance Guarantees
- Authors: Kishan Panaganti and Dileep Kalathil
- Abstract summary: This paper addresses the problem of model-free reinforcement learning for Robust Markov Decision Process (RMDP) with large state spaces.
We first propose the Robust Least Squares Policy Evaluation algorithm, which is a multi-step online model-free learning algorithm for policy evaluation.
We then propose Robust Least Squares Policy Iteration (RLSPI) algorithm for learning the optimal robust policy.
- Score: 3.8073142980733
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper addresses the problem of model-free reinforcement learning for
Robust Markov Decision Process (RMDP) with large state spaces. The goal of the
RMDP framework is to find a policy that is robust against the parameter
uncertainties due to the mismatch between the simulator model and real-world
settings. We first propose the Robust Least Squares Policy Evaluation
algorithm, which is a multi-step online model-free learning algorithm for
policy evaluation. We prove the convergence of this algorithm using stochastic
approximation techniques. We then propose Robust Least Squares Policy Iteration
(RLSPI) algorithm for learning the optimal robust policy. We also give a
general weighted Euclidean norm bound on the error (closeness to optimality) of
the resulting policy. Finally, we demonstrate the performance of our RLSPI
algorithm on some standard benchmark problems.
Related papers
- Learning Optimal Deterministic Policies with Stochastic Policy Gradients [62.81324245896716]
Policy gradient (PG) methods are successful approaches to deal with continuous reinforcement learning (RL) problems.
In common practice, convergence (hyper)policies are learned only to deploy their deterministic version.
We show how to tune the exploration level used for learning to optimize the trade-off between the sample complexity and the performance of the deployed deterministic policy.
arXiv Detail & Related papers (2024-05-03T16:45:15Z) - Probabilistic Reach-Avoid for Bayesian Neural Networks [71.67052234622781]
We show that an optimal synthesis algorithm can provide more than a four-fold increase in the number of certifiable states.
The algorithm is able to provide more than a three-fold increase in the average guaranteed reach-avoid probability.
arXiv Detail & Related papers (2023-10-03T10:52:21Z) - Policy Gradient Algorithms for Robust MDPs with Non-Rectangular
Uncertainty Sets [10.26382228865201]
We propose policy gradient algorithms for robust infinite-horizon Markov decision processes (MDPs) with non-rectangular uncertainty sets.
The corresponding robust MDPs cannot be solved with dynamic programming techniques and are in fact provably intractable.
We thus present the first complete solution scheme for robust MDPs with non-rectangular uncertainty sets offering global optimality guarantees.
arXiv Detail & Related papers (2023-05-30T13:02:25Z) - Model-based Safe Deep Reinforcement Learning via a Constrained Proximal
Policy Optimization Algorithm [4.128216503196621]
We propose an On-policy Model-based Safe Deep RL algorithm in which we learn the transition dynamics of the environment in an online manner.
We show that our algorithm is more sample efficient and results in lower cumulative hazard violations as compared to constrained model-free approaches.
arXiv Detail & Related papers (2022-10-14T06:53:02Z) - Maximum-Likelihood Inverse Reinforcement Learning with Finite-Time
Guarantees [56.848265937921354]
Inverse reinforcement learning (IRL) aims to recover the reward function and the associated optimal policy.
Many algorithms for IRL have an inherently nested structure.
We develop a novel single-loop algorithm for IRL that does not compromise reward estimation accuracy.
arXiv Detail & Related papers (2022-10-04T17:13:45Z) - Multi-Objective Policy Gradients with Topological Constraints [108.10241442630289]
We present a new algorithm for a policy gradient in TMDPs by a simple extension of the proximal policy optimization (PPO) algorithm.
We demonstrate this on a real-world multiple-objective navigation problem with an arbitrary ordering of objectives both in simulation and on a real robot.
arXiv Detail & Related papers (2022-09-15T07:22:58Z) - Stochastic first-order methods for average-reward Markov decision processes [10.023632561462712]
We study average-reward Markov decision processes (AMDPs) and develop novel first-order methods with strong theoretical guarantees for both policy optimization and policy evaluation.
By combining the policy evaluation and policy optimization parts, we establish sample complexity results for solving AMDPs under both generative and Markovian noise models.
arXiv Detail & Related papers (2022-05-11T23:02:46Z) - Sample Complexity of Robust Reinforcement Learning with a Generative
Model [0.0]
We propose a model-based reinforcement learning (RL) algorithm for learning an $epsilon$-optimal robust policy.
We consider three different forms of uncertainty sets, characterized by the total variation distance, chi-square divergence, and KL divergence.
In addition to the sample complexity results, we also present a formal analytical argument on the benefit of using robust policies.
arXiv Detail & Related papers (2021-12-02T18:55:51Z) - Approximate Midpoint Policy Iteration for Linear Quadratic Control [1.0312968200748118]
We present a midpoint policy iteration algorithm to solve linear quadratic optimal control problems in both model-based and model-free settings.
We show that in the model-based setting it achieves cubic convergence, which is superior to standard policy iteration and policy algorithms that achieve quadratic and linear convergence.
arXiv Detail & Related papers (2020-11-28T20:22:10Z) - Logistic Q-Learning [87.00813469969167]
We propose a new reinforcement learning algorithm derived from a regularized linear-programming formulation of optimal control in MDPs.
The main feature of our algorithm is a convex loss function for policy evaluation that serves as a theoretically sound alternative to the widely used squared Bellman error.
arXiv Detail & Related papers (2020-10-21T17:14:31Z) - Adaptive Sampling for Best Policy Identification in Markov Decision
Processes [79.4957965474334]
We investigate the problem of best-policy identification in discounted Markov Decision (MDPs) when the learner has access to a generative model.
The advantages of state-of-the-art algorithms are discussed and illustrated.
arXiv Detail & Related papers (2020-09-28T15:22:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.