論文の概要: Realising and compressing quantum circuits with quantum reservoir
computing
- arxiv url: http://arxiv.org/abs/2003.09569v3
- Date: Fri, 10 Dec 2021 06:32:27 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-28 13:46:18.400929
- Title: Realising and compressing quantum circuits with quantum reservoir
computing
- Title(参考訳): 量子貯水池計算による量子回路の実現と圧縮
- Authors: Sanjib Ghosh, Tanjung Krisnanda, Tomasz Paterek, Timothy C. H. Liew
- Abstract要約: 量子ノードのランダムネットワークが量子コンピューティングの堅牢なハードウェアとしてどのように使用できるかを示す。
我々のネットワークアーキテクチャは、量子ノードの単一層のみを最適化することで量子演算を誘導する。
数量子状態においては、量子回路内の複数の量子ゲートのシーケンスは単一の演算で圧縮することができる。
- 参考スコア(独自算出の注目度): 2.834895018689047
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum computers require precise control over parameters and careful
engineering of the underlying physical system. In contrast, neural networks
have evolved to tolerate imprecision and inhomogeneity. Here, using a reservoir
computing architecture we show how a random network of quantum nodes can be
used as a robust hardware for quantum computing. Our network architecture
induces quantum operations by optimising only a single layer of quantum nodes,
a key advantage over the traditional neural networks where many layers of
neurons have to be optimised. We demonstrate how a single network can induce
different quantum gates, including a universal gate set. Moreover, in the
few-qubit regime, we show that sequences of multiple quantum gates in quantum
circuits can be compressed with a single operation, potentially reducing the
operation time and complexity. As the key resource is a random network of
nodes, with no specific topology or structure, this architecture is a hardware
friendly alternative paradigm for quantum computation.
- Abstract(参考訳): 量子コンピュータはパラメータを正確に制御し、基礎となる物理システムの慎重に設計する必要がある。
対照的に、ニューラルネットワークは不適合と不均一性を許容するために進化してきた。
ここでは,リザーバコンピューティングアーキテクチャを用いて,量子ノードのランダムネットワークを量子コンピューティングのロバストなハードウェアとして利用できることを示す。
私たちのネットワークアーキテクチャは、単一の量子ノードの層だけを最適化することで量子操作を誘導します。
我々は、単一ネットワークが普遍ゲート集合を含む異なる量子ゲートを誘導する方法を実証する。
さらに,数量子ビット領域では,量子回路内の複数の量子ゲート列を単一の演算で圧縮し,演算時間と複雑性を低減できることを示す。
鍵となるリソースはノードのランダムネットワークであり、特定のトポロジーや構造を持たないため、このアーキテクチャは量子計算のためのハードウェアフレンドリーな代替パラダイムである。
関連論文リスト
- Distributed quantum architecture search [0.0]
ニューラルネットワークにインスパイアされた変分量子アルゴリズムは、量子コンピューティングにおいて新しいアプローチとなっている。
量子アーキテクチャ探索は、ゲートパラメータとともに回路構造を調整することでこの問題に対処し、高性能回路構造を自動的に発見する。
そこで我々は,特定の量子ビット接続を伴う相互接続型量子処理ユニットのための分散量子回路構造を自動設計することを目的とした,エンドツーエンドの分散量子アーキテクチャ探索フレームワークを提案する。
論文 参考訳(メタデータ) (2024-03-10T13:28:56Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
我々は,コ・テンク (co-TenQu) と呼ばれる古典量子アーキテクチャを導入する。
Co-TenQuは古典的なディープニューラルネットワークを41.72%まで向上させる。
他の量子ベースの手法よりも1.9倍も優れており、70.59%少ない量子ビットを使用しながら、同様の精度を達成している。
論文 参考訳(メタデータ) (2024-02-23T14:09:41Z) - Practical limitations on robustness and scalability of quantum Internet [0.7499722271664144]
量子インターネットのスケーリングとロバスト性に関する限界について検討する。
本稿では,セキュアな通信,デリゲートコンピューティング,および終端ノード間のリソース分布の現実的なボトルネックについて述べる。
量子ネットワークのいくつかの例では、異なる量子ネットワークタスクを実行するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-08-24T12:32:48Z) - Entanglement-Assisted Quantum Networks: Mechanics, Enabling
Technologies, Challenges, and Research Directions [66.27337498864556]
本稿では,量子ネットワークの絡み合いに関する包括的調査を行う。
ネットワーク構造、作業原則、開発段階の詳細な概要を提供する。
また、アーキテクチャ設計、絡み合いに基づくネットワーク問題、標準化など、オープンな研究の方向性を強調している。
論文 参考訳(メタデータ) (2023-07-24T02:48:22Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
本稿では,ノード間の局所的なメッセージパッシングをクロスゲート量子演算のシーケンスで学習する量子グラフ畳み込みネットワーク(QuanGCN)を提案する。
現代の量子デバイスから固有のノイズを緩和するために、ノードの接続をスパーズするためにスパース制約を適用します。
我々のQuanGCNは、いくつかのベンチマークグラフデータセットの古典的なアルゴリズムよりも機能的に同等か、さらに優れている。
論文 参考訳(メタデータ) (2022-11-09T21:43:16Z) - Quantum reservoir neural network implementation on coherently coupled
quantum oscillators [1.7086737326992172]
本稿では,多数の高密度結合ニューロンを得る量子貯水池の実装を提案する。
超伝導回路に基づく特定のハードウェア実装を解析する。
ベンチマークタスクでは99 %の最先端の精度が得られる。
論文 参考訳(メタデータ) (2022-09-07T15:24:51Z) - Feasible Architecture for Quantum Fully Convolutional Networks [4.849886707973093]
本稿では,ノイズの多い中間規模量子デバイス上で動作可能な,実現可能な純粋量子アーキテクチャを提案する。
本研究は、純粋量子完全畳み込みネットワークのトレーニングを成功させ、それをハイブリッドソリューションと比較することで利点を論じるものである。
論文 参考訳(メタデータ) (2021-10-05T01:06:54Z) - QFCNN: Quantum Fourier Convolutional Neural Network [4.344289435743451]
量子フーリエ畳み込みネットワーク(Quantum Fourier Convolutional Network, QFCN)というハイブリッド量子古典回路を提案する。
提案モデルは,古典的CNNと比較して指数的な高速化を実現し,既存の量子CNNの最良の結果よりも向上する。
交通予測や画像分類など,さまざまなディープラーニングタスクに適用することで,このアーキテクチャの可能性を示す。
論文 参考訳(メタデータ) (2021-06-19T04:37:39Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
量子機械学習(QML)は、量子コンピューティングの発展に頼って、大規模な複雑な機械学習問題を探求する、有望な分野として登場した。
本稿では、量子データ上で動作し、量子回路パラメータの学習を分散的に共有できる初めての完全量子連合学習フレームワークを提案する。
論文 参考訳(メタデータ) (2021-05-30T12:19:27Z) - Quantum Deformed Neural Networks [83.71196337378022]
我々は,量子コンピュータ上で効率的に動作するように設計された新しい量子ニューラルネットワーク層を開発した。
入力状態の絡み合いに制限された場合、古典的なコンピュータでシミュレートすることができる。
論文 参考訳(メタデータ) (2020-10-21T09:46:12Z) - Experimental Quantum Generative Adversarial Networks for Image
Generation [93.06926114985761]
超伝導量子プロセッサを用いた実世界の手書き桁画像の学習と生成を実験的に行う。
我々の研究は、短期量子デバイス上での高度な量子生成モデル開発のためのガイダンスを提供する。
論文 参考訳(メタデータ) (2020-10-13T06:57:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。