Multi-Task Learning Enhanced Single Image De-Raining
- URL: http://arxiv.org/abs/2003.09689v2
- Date: Mon, 11 May 2020 13:23:06 GMT
- Title: Multi-Task Learning Enhanced Single Image De-Raining
- Authors: Yulong Fan, Rong Chen, Bo Li
- Abstract summary: Rain removal in images is an important task in computer vision filed and attracting attentions of more and more people.
In this paper, we address a non-trivial issue of removing visual effect of rain streak from a single image.
Our method combines various semantic constraint task in a proposed multi-task regression model for rain removal.
- Score: 9.207797392774465
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Rain removal in images is an important task in computer vision filed and
attracting attentions of more and more people. In this paper, we address a
non-trivial issue of removing visual effect of rain streak from a single image.
Differing from existing work, our method combines various semantic constraint
task in a proposed multi-task regression model for rain removal. These tasks
reinforce the model's capabilities from the content, edge-aware, and local
texture similarity respectively. To further improve the performance of
multi-task learning, we also present two simple but powerful dynamic weighting
algorithms. The proposed multi-task enhanced network (MENET) is a powerful
convolutional neural network based on U-Net for rain removal research, with a
specific focus on utilize multiple tasks constraints and exploit the synergy
among them to facilitate the model's rain removal capacity. It is noteworthy
that the adaptive weighting scheme has further resulted in improved network
capability. We conduct several experiments on synthetic and real rain images,
and achieve superior rain removal performance over several selected
state-of-the-art (SOTA) approaches. The overall effect of our method is
impressive, even in the decomposition of heavy rain and rain streak
accumulation.The source code and some results can be found
at:https://github.com/SumiHui/MENET.
Related papers
- Dynamic Association Learning of Self-Attention and Convolution in Image
Restoration [56.49098856632478]
CNNs and Self attention have achieved great success in multimedia applications for dynamic association learning of self-attention and convolution in image restoration.
This paper proposes an association learning method to utilize the advantages and suppress their shortcomings, so as to achieve high-quality and efficient inpainting.
arXiv Detail & Related papers (2023-11-09T05:11:24Z) - Contrastive Learning Based Recursive Dynamic Multi-Scale Network for
Image Deraining [47.764883957379745]
Rain streaks significantly decrease the visibility of captured images.
Existing deep learning-based image deraining methods employ manually crafted networks and learn a straightforward projection from rainy images to clear images.
We propose a contrastive learning-based image deraining method that investigates the correlation between rainy and clear images.
arXiv Detail & Related papers (2023-05-29T13:51:41Z) - Multi-scale Attentive Image De-raining Networks via Neural Architecture
Search [23.53770663034919]
We develop a high-performance multi-scale attentive neural architecture search (MANAS) framework for image deraining.
The proposed method formulates a new multi-scale attention search space with multiple flexible modules that are favorite to the image de-raining task.
The internal multiscale attentive architecture of the de-raining network is searched automatically through a gradient-based search algorithm.
arXiv Detail & Related papers (2022-07-02T03:47:13Z) - RCDNet: An Interpretable Rain Convolutional Dictionary Network for
Single Image Deraining [49.99207211126791]
We specifically build a novel deep architecture, called rain convolutional dictionary network (RCDNet)
RCDNet embeds the intrinsic priors of rain streaks and has clear interpretability.
By end-to-end training such an interpretable network, all involved rain kernels and proximal operators can be automatically extracted.
arXiv Detail & Related papers (2021-07-14T16:08:11Z) - Beyond Monocular Deraining: Parallel Stereo Deraining Network Via
Semantic Prior [103.49307603952144]
Most existing de-rain algorithms use only one single input image and aim to recover a clean image.
We present a Paired Rain Removal Network (PRRNet), which exploits both stereo images and semantic information.
Experiments on both monocular and the newly proposed stereo rainy datasets demonstrate that the proposed method achieves the state-of-the-art performance.
arXiv Detail & Related papers (2021-05-09T04:15:10Z) - Multi-Scale Hourglass Hierarchical Fusion Network for Single Image
Deraining [8.964751500091005]
Rain streaks bring serious blurring and visual quality degradation, which often vary in size, direction and density.
Current CNN-based methods achieve encouraging performance, while are limited to depict rain characteristics and recover image details in the poor visibility environment.
We present a Multi-scale Hourglass Hierarchical Fusion Network (MH2F-Net) in end-to-end manner, to exactly captures rain streak features with multi-scale extraction, hierarchical distillation and information aggregation.
arXiv Detail & Related papers (2021-04-25T08:27:01Z) - A Model-driven Deep Neural Network for Single Image Rain Removal [52.787356046951494]
We propose a model-driven deep neural network for the task, with fully interpretable network structures.
Based on the convolutional dictionary learning mechanism for representing rain, we propose a novel single image deraining model.
All the rain kernels and operators can be automatically extracted, faithfully characterizing the features of both rain and clean background layers.
arXiv Detail & Related papers (2020-05-04T09:13:25Z) - Physical Model Guided Deep Image Deraining [10.14977592107907]
Single image deraining is an urgent task because the degraded rainy image makes many computer vision systems fail to work.
We propose a novel network based on physical model guided learning for single image deraining.
arXiv Detail & Related papers (2020-03-30T07:08:13Z) - Multi-Scale Progressive Fusion Network for Single Image Deraining [84.0466298828417]
Rain streaks in the air appear in various blurring degrees and resolutions due to different distances from their positions to the camera.
Similar rain patterns are visible in a rain image as well as its multi-scale (or multi-resolution) versions.
In this work, we explore the multi-scale collaborative representation for rain streaks from the perspective of input image scales and hierarchical deep features.
arXiv Detail & Related papers (2020-03-24T17:22:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.