Unsupervised Network for Single Image Raindrop Removal
- URL: http://arxiv.org/abs/2412.03019v1
- Date: Wed, 04 Dec 2024 04:10:50 GMT
- Title: Unsupervised Network for Single Image Raindrop Removal
- Authors: Huijiao Wang, Shenghao Zhao, Lei Yu, Xulei Yang,
- Abstract summary: This study proposes a deep neural network for raindrop removal based on unsupervised learning.
Our proposed model performs layer separation based on cycle network architecture.
Experiments on raindrop benchmark datasets demonstrate the effectiveness of the proposed method.
- Score: 4.982370044801629
- License:
- Abstract: Image quality degradation caused by raindrops is one of the most important but challenging problems that reduce the performance of vision systems. Most existing raindrop removal algorithms are based on a supervised learning method using pairwise images, which are hard to obtain in real-world applications. This study proposes a deep neural network for raindrop removal based on unsupervised learning, which only requires two unpaired image sets with and without raindrops. Our proposed model performs layer separation based on cycle network architecture, which aims to separate a rainy image into a raindrop layer, a transparency mask, and a clean background layer. The clean background layer is the target raindrop removal result, while the transparency mask indicates the spatial locations of the raindrops. In addition, the proposed model applies a feedback mechanism to benefit layer separation by refining low-level representation with high-level information. i.e., the output of the previous iteration is used as input for the next iteration, together with the input image with raindrops. As a result, raindrops could be gradually removed through this feedback manner. Extensive experiments on raindrop benchmark datasets demonstrate the effectiveness of the proposed method on quantitative metrics and visual quality.
Related papers
- RainyScape: Unsupervised Rainy Scene Reconstruction using Decoupled Neural Rendering [50.14860376758962]
We propose RainyScape, an unsupervised framework for reconstructing clean scenes from a collection of multi-view rainy images.
Based on the spectral bias property of neural networks, we first optimize the neural rendering pipeline to obtain a low-frequency scene representation.
We jointly optimize the two modules, driven by the proposed adaptive direction-sensitive gradient-based reconstruction loss.
arXiv Detail & Related papers (2024-04-17T14:07:22Z) - Contrastive Learning Based Recursive Dynamic Multi-Scale Network for
Image Deraining [47.764883957379745]
Rain streaks significantly decrease the visibility of captured images.
Existing deep learning-based image deraining methods employ manually crafted networks and learn a straightforward projection from rainy images to clear images.
We propose a contrastive learning-based image deraining method that investigates the correlation between rainy and clear images.
arXiv Detail & Related papers (2023-05-29T13:51:41Z) - Single Image Deraining via Feature-based Deep Convolutional Neural
Network [13.39233717329633]
A single image deraining algorithm based on the combination of data-driven and model-based approaches is proposed.
Experiments show that the proposed algorithm significantly outperforms state-of-the-art methods in terms of both qualitative and quantitative measures.
arXiv Detail & Related papers (2023-05-03T13:12:51Z) - Feature-Aligned Video Raindrop Removal with Temporal Constraints [68.49161092870224]
Raindrop removal is challenging for both single image and video.
Unlike rain streaks, adherent raindrops tend to cover the same area in several frames.
Our method employs a two-stage video-based raindrop removal method.
arXiv Detail & Related papers (2022-05-29T05:42:14Z) - UnfairGAN: An Enhanced Generative Adversarial Network for Raindrop
Removal from A Single Image [8.642603456626391]
UnfairGAN is an enhanced generative adversarial network that can utilize prior high-level information, such as edges and rain estimation, to boost deraining performance.
We show that our proposed method is superior to other state-of-the-art approaches of deraining raindrops regarding quantitative metrics and visual quality.
arXiv Detail & Related papers (2021-10-11T18:02:43Z) - RCDNet: An Interpretable Rain Convolutional Dictionary Network for
Single Image Deraining [49.99207211126791]
We specifically build a novel deep architecture, called rain convolutional dictionary network (RCDNet)
RCDNet embeds the intrinsic priors of rain streaks and has clear interpretability.
By end-to-end training such an interpretable network, all involved rain kernels and proximal operators can be automatically extracted.
arXiv Detail & Related papers (2021-07-14T16:08:11Z) - Beyond Monocular Deraining: Parallel Stereo Deraining Network Via
Semantic Prior [103.49307603952144]
Most existing de-rain algorithms use only one single input image and aim to recover a clean image.
We present a Paired Rain Removal Network (PRRNet), which exploits both stereo images and semantic information.
Experiments on both monocular and the newly proposed stereo rainy datasets demonstrate that the proposed method achieves the state-of-the-art performance.
arXiv Detail & Related papers (2021-05-09T04:15:10Z) - Structural Residual Learning for Single Image Rain Removal [48.87977695398587]
This study proposes a new network architecture by enforcing the output residual of the network possess intrinsic rain structures.
Such a structural residual setting guarantees the rain layer extracted by the network finely comply with the prior knowledge of general rain streaks.
arXiv Detail & Related papers (2020-05-19T05:52:13Z) - Physical Model Guided Deep Image Deraining [10.14977592107907]
Single image deraining is an urgent task because the degraded rainy image makes many computer vision systems fail to work.
We propose a novel network based on physical model guided learning for single image deraining.
arXiv Detail & Related papers (2020-03-30T07:08:13Z) - Multi-Task Learning Enhanced Single Image De-Raining [9.207797392774465]
Rain removal in images is an important task in computer vision filed and attracting attentions of more and more people.
In this paper, we address a non-trivial issue of removing visual effect of rain streak from a single image.
Our method combines various semantic constraint task in a proposed multi-task regression model for rain removal.
arXiv Detail & Related papers (2020-03-21T16:19:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.