Phase-sensitive nuclear target spectroscopy (PHANTASY)
- URL: http://arxiv.org/abs/2003.09846v1
- Date: Sun, 22 Mar 2020 09:49:54 GMT
- Title: Phase-sensitive nuclear target spectroscopy (PHANTASY)
- Authors: Benedikt Herkommer and J\"org Evers
- Abstract summary: M"ossbauer nuclei feature exceptionally narrow resonances at hard x-ray energies.
Direct spectroscopy at modern x-ray sources is challenging because of the broad spectral bandwidth of the delivered x-ray pulses.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: M\"ossbauer nuclei feature exceptionally narrow resonances at hard x-ray
energies, which render them ideal probes for structure and dynamics in
condensed-matter systems, and a promising platform for x-ray quantum optics and
fundamental tests. However, a direct spectroscopy at modern x-ray sources such
as synchrotrons or x-ray free electron lasers is challenging, because of the
broad spectral bandwidth of the delivered x-ray pulses, and because of a
limited spectral resolution offered by x-ray optics and detectors. To overcome
these challenges, here, we propose a spectroscopy technique based on a
spectrally narrow reference absorber that is rapidly oscillating along the
propagation direction of the x-ray light. The motion induces sidebands to the
response of the absorber, which we scan across the spectrum of the unknown
target to gain spectral information. The oscillation further introduces a
dependence of the detected light on the motional phase at the time of x-ray
excitation as an additional controllable degree of freedom. We show how a
Fourier analysis with respect to this phase enables one to selectively extract
parts of the recorded intensity after the actual experiment, throughout the
data analysis. This allows one to improve the spectral recovery by removing
unwanted signal contributions. Our method is capable of gaining spectral
information from the entire measured intensity, and not only from the intensity
at late times after the excitation, such that a significantly higher part of
the signal photons can be used. Furthermore, it not only enables one to measure
the amplitude of the spectral response, but also its phase.
Related papers
- Pulse characterization at the single-photon level through chronocyclic $Q$-function measurements [2.193021519015704]
We demonstrate the retrieval of the complex spectral amplitude of single-photon-level light pulses through measuring their chronocyclic $Q-$function.
Our approach draws inspiration from quantum state tomography by exploiting the analogy between quadrature phase space and time-frequency phase space.
arXiv Detail & Related papers (2024-08-22T11:30:49Z) - Super-resolution of ultrafast pulses via spectral inversion [0.0]
We experimentally demonstrate a spectroscopic super-resolution method aimed at broadband light (10s to 100s of GHz)
We study the paradigmatic problem of estimating a small separation between two incoherent spectral features of equal brightness, with a small number of photons per coherence time.
The setup is based on an actively stabilized Mach-Zehnder-type interferometer with electro-optic time lenses and passive spectral dispersers implementing the inversion.
arXiv Detail & Related papers (2024-03-18T12:21:37Z) - Unraveling Time- and Frequency-Resolved Nuclear Resonant Scattering
Spectra [0.0]
M"ossbauer nuclei form a promising platform for quantum optics, spectroscopy and dynamics at energies of hard x-rays.
We develop spectroscopy and analysis techniques for time- and frequency-resolved Nuclear Resonant Scattering spectra.
arXiv Detail & Related papers (2022-10-18T13:31:12Z) - Quantum-enhanced absorption spectroscopy with bright squeezed frequency
combs [91.3755431537592]
We propose a strategy combining the advantages of frequency modulation spectroscopy with the reduced noise properties accessible by squeezing the probe state.
A homodyne detection scheme allows the simultaneous measurement of the absorption at multiple frequencies.
We predict a significant enhancement of the signal-to-noise ratio that scales exponentially with the squeezing factor.
arXiv Detail & Related papers (2022-09-30T17:57:05Z) - Unsupervised Spectral Unmixing For Telluric Correction Using A Neural
Network Autoencoder [58.720142291102135]
We present a neural network autoencoder approach for extracting a telluric transmission spectrum from a large set of high-precision observed solar spectra from the HARPS-N radial velocity spectrograph.
arXiv Detail & Related papers (2021-11-17T12:54:48Z) - Mid-infrared homodyne balanced detector for quantum light
characterization [52.77024349608834]
We present the characterization of a novel balanced homodyne detector operating in the mid-infrared.
We discuss the experimental results with a view to possible applications to quantum technologies, such as free-space quantum communication.
arXiv Detail & Related papers (2021-03-16T11:08:50Z) - Quantum Langevin approach for superradiant nanolasers [58.720142291102135]
A new approach for analytically solving quantum nonlinear Langevin equations is proposed and applied to calculations of spectra of superradiant lasers.
We calculate lasing spectra for arbitrary pump rates and recover well-known results such as the pump dependence of the laser linewidth across the threshold region.
We predict new sideband peaks in the spectrum of superradiant lasers with large relaxation oscillations as well as new nonlinear structures in the lasing spectra for weak pump rates.
arXiv Detail & Related papers (2020-12-04T11:30:30Z) - Quantum-inspired terahertz spectroscopy with visible photons [0.0]
Terahertz spectroscopy allows for identifying different isomers of materials, for drug discrimination and for detecting hazardous substances.
Despite these useful applications, terahertz spectroscopy suffers from the still technically demanding detection of terahertz radiation.
Here, we report on the first demonstration of terahertz spectroscopy, in which the sample interacts with terahertz idler photons.
arXiv Detail & Related papers (2020-11-05T11:11:47Z) - Time-Delayed Magnetic Control and Narrowing of X-Ray frequency Spectra
in Two-Target Nuclear Forward Scattering [0.0]
We show that different hard-x-ray spectral redistributions can be achieved by single or multiple switching of magnetic field in nuclear targets.
Our scheme can generate x-ray spectral lines with tenfold intensity enhancement and spectral width narrower than four times the nuclear natural linewidth.
arXiv Detail & Related papers (2020-10-20T12:45:16Z) - Resonant high-energy bremsstrahlung of ultrarelativistic electrons in
the field of a nucleus and a pulsed light wave [68.8204255655161]
Research investigates the resonant high-energy spontaneous bremsstrahlung of ultrarelativistic electrons with considerable energies in the field of a nucleus and a quasimonochromatic laser wave.
arXiv Detail & Related papers (2020-04-05T16:27:11Z) - Hyperspectral-Multispectral Image Fusion with Weighted LASSO [68.04032419397677]
We propose an approach for fusing hyperspectral and multispectral images to provide high-quality hyperspectral output.
We demonstrate that the proposed sparse fusion and reconstruction provides quantitatively superior results when compared to existing methods on publicly available images.
arXiv Detail & Related papers (2020-03-15T23:07:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.