Pulse characterization at the single-photon level through chronocyclic $Q$-function measurements
- URL: http://arxiv.org/abs/2408.12306v1
- Date: Thu, 22 Aug 2024 11:30:49 GMT
- Title: Pulse characterization at the single-photon level through chronocyclic $Q$-function measurements
- Authors: Abhinandan Bhattacharjee, Patrick Folge, Laura Serino, Jaroslav Řeháček, Zdeněk Hradil, Christine Silberhorn, Benjamin Brecht,
- Abstract summary: We demonstrate the retrieval of the complex spectral amplitude of single-photon-level light pulses through measuring their chronocyclic $Q-$function.
Our approach draws inspiration from quantum state tomography by exploiting the analogy between quadrature phase space and time-frequency phase space.
- Score: 2.193021519015704
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The characterization of the complex spectral amplitude that is, the spectrum and spectral phase, of single-photon-level light fields is a crucial capability for modern photonic quantum technologies. Since established pulse characterisation techniques are not applicable at low intensities, alternative approaches are required. Here, we demonstrate the retrieval of the complex spectral amplitude of single-photon-level light pulses through measuring their chronocyclic $Q-$function. Our approach draws inspiration from quantum state tomography by exploiting the analogy between quadrature phase space and time-frequency phase space. In the experiment, we perform time-frequency projections with a quantum pulse gate, which directly yield the chronocyclic $Q-$function. We evaluate the data with maximum likelihood estimation, which is the established technique for quantum state tomography. This yields not only an unambigious estimate of the complex spectral amplitude of the state under test that does not require any \textit{a priori} information, but also allows for, in principle, estimating the spectral-temporal coherence properties of the state. Our method accurately recovers features such as jumps in the spectral phase and is resistant against regions with zero spectral intensity, which makes it immediately beneficial also for classical pulse characterization problems.
Related papers
- Ultrafast pump-probe phase-randomized tomography [0.0]
We report the first implementation of ultrafast phase randomized tomography, combining pump-probe experiments with quantum optical state tomography.
Our results set an upper limit to the non-classical features of phononic state in $alpha$-quartz.
arXiv Detail & Related papers (2024-11-13T18:37:30Z) - On the role of chirping in pulsed single photon spectroscopy [0.0]
We investigate the precision of estimating the interaction strength between a two-level system and a single-photon pulse when the latter is subject to chirping.
We show that experimentally feasible measurements are optimal, or close to it, for chirped, pulsed single photon spectroscopy.
arXiv Detail & Related papers (2024-05-04T17:46:11Z) - Super-resolution of ultrafast pulses via spectral inversion [0.0]
We experimentally demonstrate a spectroscopic super-resolution method aimed at broadband light (10s to 100s of GHz)
We study the paradigmatic problem of estimating a small separation between two incoherent spectral features of equal brightness, with a small number of photons per coherence time.
The setup is based on an actively stabilized Mach-Zehnder-type interferometer with electro-optic time lenses and passive spectral dispersers implementing the inversion.
arXiv Detail & Related papers (2024-03-18T12:21:37Z) - Broadband biphoton source for quantum optical coherence tomography based on a Michelson interferometer [39.58317527488534]
We describe and experimentally demonstrate a novel technique for generation of a bright collinear biphoton field with a broad spectrum.
As the most straightforward application of the source, we employ Michelson interferometer-based quantum optical coherence tomography (Q OCT)
arXiv Detail & Related papers (2024-01-31T13:52:37Z) - Hyper-entanglement between pulse modes and frequency bins [101.18253437732933]
Hyper-entanglement between two or more photonic degrees of freedom (DOF) can enhance and enable new quantum protocols.
We demonstrate the generation of photon pairs hyper-entangled between pulse modes and frequency bins.
arXiv Detail & Related papers (2023-04-24T15:43:08Z) - Digital noise spectroscopy with a quantum sensor [57.53000001488777]
We introduce and experimentally demonstrate a quantum sensing protocol to sample and reconstruct the auto-correlation of a noise process.
Walsh noise spectroscopy method exploits simple sequences of spin-flip pulses to generate a complete basis of digital filters.
We experimentally reconstruct the auto-correlation function of the effective magnetic field produced by the nuclear-spin bath on the electronic spin of a single nitrogen-vacancy center in diamond.
arXiv Detail & Related papers (2022-12-19T02:19:35Z) - Variable electro-optic shearing interferometry for ultrafast
single-photon-level pulse characterization [0.0]
We introduce a pulse characterisation scheme that maps the magnitude of its short-time Fourier transform.
Our method is based on introducing a series of controlled time and frequency shifts.
We successfully reconstructed the spectral phase and amplitude of a single-photon-level pulse.
arXiv Detail & Related papers (2022-07-28T12:45:08Z) - Visualizing spinon Fermi surfaces with time-dependent spectroscopy [62.997667081978825]
We propose applying time-dependent photo-emission spectroscopy, an established tool in solid state systems, in cold atom quantum simulators.
We show in exact diagonalization simulations of the one-dimensional $t-J$ model that the spinons start to populate previously unoccupied states in an effective band structure.
The dependence of the spectral function on the time after the pump pulse reveals collective interactions among spinons.
arXiv Detail & Related papers (2021-05-27T18:00:02Z) - Conditional preparation of non-Gaussian quantum optical states by
mesoscopic measurement [62.997667081978825]
Non-Gaussian states of an optical field are important as a proposed resource in quantum information applications.
We propose a novel approach involving displacement of the ancilla field into the regime where mesoscopic detectors can be used.
We conclude that states with strong Wigner negativity can be prepared at high rates by this technique under experimentally attainable conditions.
arXiv Detail & Related papers (2021-03-29T16:59:18Z) - Spectrally reconfigurable quantum emitters enabled by optimized fast
modulation [42.39394379814941]
Spectral control in solid state platforms such as color centers, rare earth ions, and quantum dots is attractive for realizing such applications on-chip.
We propose the use of frequency-modulated optical transitions for spectral engineering of single photon emission.
Our results suggest that frequency modulation is a powerful technique for the generation of new light states with unprecedented control over the spectral and temporal properties of single photons.
arXiv Detail & Related papers (2020-03-27T18:24:35Z) - Conditional Spectroscopy via Non-Stationary Optical Homodyne Quantum
State Tomography [0.0]
We introduce non-stationary quantum state tomography, which adapts the technique to the special requirements of ultrafast spectroscopy.
In detail, we gain access to the amplitude and phase of light fields with a temporal resolution of about 100,fs without the need for a fixed phase reference.
arXiv Detail & Related papers (2020-02-04T18:42:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.