High-fidelity spatial mode transmission through a 1-km-long multimode
fiber via vectorial time reversal
- URL: http://arxiv.org/abs/2003.09883v3
- Date: Thu, 25 Mar 2021 14:15:18 GMT
- Title: High-fidelity spatial mode transmission through a 1-km-long multimode
fiber via vectorial time reversal
- Authors: Yiyu Zhou, Boris Braverman, Alexander Fyffe, Runzhou Zhang, Jiapeng
Zhao, Alan E. Willner, Zhimin Shi, Robert W. Boyd
- Abstract summary: We develop and experimentally demonstrate a vectorial time reversal technique for long multimode fibers.
Average modal fidelity above 80% for 210 Laguerre-Gauss and Hermite-Gauss modes by using vectorial time reversal over an unstabilized 1-km-long fiber.
We also propose a practical and scalable spatial-mode-multiplexed quantum communication protocol over long multimode fibers to illustrate potential applications.
- Score: 51.28090008093831
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The large number of spatial modes supported by standard multimode fibers is a
promising platform for boosting the channel capacity of quantum and classical
communications by orders of magnitude. However, the practical use of long
multimode fibers is severely hampered by modal crosstalk and polarization
mixing. To overcome these challenges, we develop and experimentally demonstrate
a vectorial time reversal technique, which is accomplished by digitally
pre-shaping the wavefront and polarization of the forward-propagating signal
beam to be the phase conjugate of an auxiliary, backward-propagating probe
beam. Here, we report an average modal fidelity above 80% for 210
Laguerre-Gauss and Hermite-Gauss modes by using vectorial time reversal over an
unstabilized 1-km-long fiber. We also propose a practical and scalable
spatial-mode-multiplexed quantum communication protocol over long multimode
fibers to illustrate potential applications that can be enabled by our
technique.
Related papers
- Shaping Single Photons through Multimode Optical Fibers using Mechanical
Perturbations [55.41644538483948]
We show an all-fiber approach for controlling the shape of single photons and the spatial correlations between entangled photon pairs.
We optimize these perturbations to localize the spatial distribution of a single photon or the spatial correlations of photon pairs in a single spot.
arXiv Detail & Related papers (2023-06-04T07:33:39Z) - Two-mode squeezing over deployed fiber coexisting with conventional
communications [55.41644538483948]
Multi-mode squeezing is critical for enabling CV quantum networks and distributed quantum sensing.
To date, multi-mode squeezing measured by homodyne detection has been limited to single-room experiments.
This demonstration enables future applications in quantum networks and quantum sensing that rely on distributed multi-mode squeezing.
arXiv Detail & Related papers (2023-04-20T02:29:33Z) - Towards Fully Passive Time-Bin Quantum Key Distribution over Multi-Mode
Channels [37.69303106863453]
Phase stabilization of distant quantum time-bin interferometers is a major challenge for quantum communication networks.
We demonstrate a novel approach using reference frame independent time-bin quantum key distribution.
This is achieved without any mode filtering, mode sorting, adaptive optics, active basis selection, or active phase alignment.
arXiv Detail & Related papers (2023-02-10T03:53:21Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - A Programmable Spatiotemporal Quantum Parametric Mode Sorter [8.745431716288177]
We show a programmable parametric mode sorter of high-dimensional signals in a composite Hilbert space mode-selective quantum frequency upconversion.
We achieve more than 12 dB extinction for mutually unbiased basis modes (MUB) sets experimentally.
arXiv Detail & Related papers (2022-10-29T07:11:10Z) - Characterization and stability measurement of deployed multicore fibers
for quantum applications [50.591267188664666]
We characterize for the first time, in terms of phase stability, multiple strands of a 4-core multicore fiber installed underground in the city of L'Aquila.
We investigate the possibility of using such an infrastructure to implement quantum-enhanced schemes, such as high-dimensional quantum key distribution, quantum-based environmental sensors.
arXiv Detail & Related papers (2021-03-11T18:24:59Z) - Few-mode-fiber technology fine-tunes losses of quantum communication
systems [0.0]
Time-bins for quantum communication are impractical over long distances.
We propose a few-mode fiber space-division multiplexing platform working with angular momentum modes.
We experimentally demonstrate our proposal by successfully transmitting phase-encoded single-photon states for quantum cryptography over 500 m of few-mode fiber.
arXiv Detail & Related papers (2021-03-08T19:01:58Z) - Fast Generation and Detection of Spatial Modes of Light using an
Acousto-Optic Modulator [62.997667081978825]
spatial modes of light provide a high-dimensional space that can be used to encode both classical and quantum information.
Current approaches for dynamically generating and measuring these modes are slow, due to the need to reconfigure a high-resolution phase mask.
We experimentally realize this approach, using a double-pass AOM to generate one of five orbital angular momentum states.
We are able to reconstruct arbitrary states in under 1 ms with an average fidelity of 96.9%.
arXiv Detail & Related papers (2020-07-31T14:58:30Z) - Arbitrary spatial mode sorting in a multimode fiber [1.614301262383079]
We demonstrate an arbitrary spatial mode sorter by harnessing the random mode mixing process occurring during light propagation in a multimode fibre.
Our approach provides a spatial mode sorter that is compact, easy-to-fabricate, programmable and usable with any spatial basis.
arXiv Detail & Related papers (2020-04-12T10:34:59Z) - Multimode Single-Pass Spatio-temporal Squeezing [0.0]
We present a single-pass source of broadband multimode squeezed light with potential application in quantum information and quantum metrology.
The source is based on a type parametric down-conversion (PDC) process inside a bulk nonlinear crystal in a non-collinear configuration.
arXiv Detail & Related papers (2020-01-12T18:30:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.