Towards Fully Passive Time-Bin Quantum Key Distribution over Multi-Mode
Channels
- URL: http://arxiv.org/abs/2302.05038v2
- Date: Tue, 14 Nov 2023 05:05:07 GMT
- Title: Towards Fully Passive Time-Bin Quantum Key Distribution over Multi-Mode
Channels
- Authors: Ramy Tannous, Wilson Wu, St\'ephane Vinet, Chithrabhanu Perumangatt,
Dogan Sinar, Alexander Ling, Thomas Jennewein
- Abstract summary: Phase stabilization of distant quantum time-bin interferometers is a major challenge for quantum communication networks.
We demonstrate a novel approach using reference frame independent time-bin quantum key distribution.
This is achieved without any mode filtering, mode sorting, adaptive optics, active basis selection, or active phase alignment.
- Score: 37.69303106863453
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Phase stabilization of distant quantum time-bin interferometers is a major
challenge for quantum communication networks, and is typically achieved by
exchanging optical reference signals, which can be particularly challenging
over free-space channels. We demonstrate a novel approach using reference frame
independent time-bin quantum key distribution that completely avoids the need
for active relative phase stabilization while simultaneously overcoming a
highly multi-mode channel without any active mode filtering. We realized a
proof-of-concept demonstration using hybrid polarization and time-bin entangled
photons, that achieved a sustained asymptotic secure key rate of greater than
0.06 bits/coincidence over a 15m multi-mode fiber optical channel. This is
achieved without any mode filtering, mode sorting, adaptive optics, active
basis selection, or active phase alignment. This scheme enables passive
self-compensating time-bin quantum communication which can be readily applied
to long-distance links and various wavelengths, and could be useful for a
variety of spatially multi-mode and fluctuating channels involving rapidly
moving platforms, including airborne and satellite systems.
Related papers
- Programmable time-frequency mode-sorting of single photons with a multi-output quantum pulse gate [0.0]
We demonstrate a high-dimensional mode-sorter for single photons based on a multi-output quantum pulse gate.
This device can facilitate practical realizations of quantum information applications.
arXiv Detail & Related papers (2024-10-04T17:07:02Z) - Extendable optical phase synchronization of remote and independent quantum network nodes over deployed fibers [0.0]
Single-click heralding schemes can be used to increase entanglement rates at the cost of needing an optically phase-synchronized architecture.
We present a phase synchronization scheme for a metropolitan quantum network, operating in the low-loss telecom L-band.
arXiv Detail & Related papers (2024-08-22T15:05:23Z) - Scalable Multipartite Entanglement of Remote Rare-earth Ion Qubits [3.9514210525254785]
Single photon emitters with internal spin are leading contenders for developing quantum repeater networks.
We introduce a scalable approach to quantum networking that utilizes frequency erasing photon detection and real-time quantum control.
Our results provide a practical route to overcoming universal limitations imposed by non-uniformity and instability in solid-state emitters.
arXiv Detail & Related papers (2024-02-25T23:55:29Z) - Shaping Single Photons through Multimode Optical Fibers using Mechanical
Perturbations [55.41644538483948]
We show an all-fiber approach for controlling the shape of single photons and the spatial correlations between entangled photon pairs.
We optimize these perturbations to localize the spatial distribution of a single photon or the spatial correlations of photon pairs in a single spot.
arXiv Detail & Related papers (2023-06-04T07:33:39Z) - Hyper-entanglement between pulse modes and frequency bins [101.18253437732933]
Hyper-entanglement between two or more photonic degrees of freedom (DOF) can enhance and enable new quantum protocols.
We demonstrate the generation of photon pairs hyper-entangled between pulse modes and frequency bins.
arXiv Detail & Related papers (2023-04-24T15:43:08Z) - Ultra-long photonic quantum walks via spin-orbit metasurfaces [52.77024349608834]
We report ultra-long photonic quantum walks across several hundred optical modes, obtained by propagating a light beam through very few closely-stacked liquid-crystal metasurfaces.
With this setup we engineer quantum walks up to 320 discrete steps, far beyond state-of-the-art experiments.
arXiv Detail & Related papers (2022-03-28T19:37:08Z) - Frequency multiplexed entanglement for continuous-variable quantum key
distribution [0.0]
Quantum key distribution with continuous variables already uses advantageous high-speed single-mode homodyne detection with low electronic noise at room temperature.
The distance for secure key transmission through lossy channels can approach 300 km in current optical fibers.
We demonstrate the positive outcome of this methodology on the experimentally characterized frequency-multiplexed entangled source of femtosecond optical pulses.
arXiv Detail & Related papers (2021-10-27T15:18:16Z) - Optical Entanglement of Distinguishable Quantum Emitters [0.0]
We propose and demonstrate an efficient method for entangling emitters with optical transitions separated by many linewidths.
In our approach, electro-optic modulators enable a single photon to herald a parity measurement on a pair of spin qubits.
Working with distinguishable emitters allows for individual qubit addressing and readout, enabling parallel control and entanglement of both co-located and spatially separated emitters.
arXiv Detail & Related papers (2021-08-24T19:37:08Z) - Fast Generation and Detection of Spatial Modes of Light using an
Acousto-Optic Modulator [62.997667081978825]
spatial modes of light provide a high-dimensional space that can be used to encode both classical and quantum information.
Current approaches for dynamically generating and measuring these modes are slow, due to the need to reconfigure a high-resolution phase mask.
We experimentally realize this approach, using a double-pass AOM to generate one of five orbital angular momentum states.
We are able to reconstruct arbitrary states in under 1 ms with an average fidelity of 96.9%.
arXiv Detail & Related papers (2020-07-31T14:58:30Z) - High-fidelity spatial mode transmission through a 1-km-long multimode
fiber via vectorial time reversal [51.28090008093831]
We develop and experimentally demonstrate a vectorial time reversal technique for long multimode fibers.
Average modal fidelity above 80% for 210 Laguerre-Gauss and Hermite-Gauss modes by using vectorial time reversal over an unstabilized 1-km-long fiber.
We also propose a practical and scalable spatial-mode-multiplexed quantum communication protocol over long multimode fibers to illustrate potential applications.
arXiv Detail & Related papers (2020-03-22T13:13:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.