Dynamics of Rydberg excitations and quantum correlations in an atomic
array coupled to a photonic crystal waveguide
- URL: http://arxiv.org/abs/2003.09885v2
- Date: Wed, 24 Jun 2020 07:03:26 GMT
- Title: Dynamics of Rydberg excitations and quantum correlations in an atomic
array coupled to a photonic crystal waveguide
- Authors: Yashwant Chougale, Jugal Talukdar, Tom\'as Ramos, Rejish Nath
- Abstract summary: We study the dynamics of up to two Rydberg excitations and the correlation growth in a chain of atoms coupled to a photonic crystal waveguide.
In this setup, an excitation can hop from one atom to another via exponentially decaying exchange interactions mediated by the waveguide.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the dynamics of up to two Rydberg excitations and the correlation
growth in a chain of atoms coupled to a photonic crystal waveguide. In this
setup, an excitation can hop from one atom to another via exponentially
decaying exchange interactions mediated by the waveguide. An initially
localized excitation undergoes a continuous-time quantum walk for short-range
hopping, and for long-range, it experiences quasi-localization. Besides that,
the inverse participation ratio reveals a super-ballistic diffusion of the
excitation in short times, whereas, at a long time, it becomes ballistic. For
two initially localized excitations, intriguing, and complex dynamical
scenarios emerge for different initial separations due to the competition
between the Rydberg-Rydberg and exchange interactions. In particular, the
two-point correlation reveals a light-cone behavior even for sufficiently
long-range exchange interactions. Additionally, we characterize the growth of
bipartite entanglement entropy, which exhibits a global bound if only one
excitation is present in the dynamics. Finally, we analyze the effect of
imperfections due to spontaneous emission from the Rydberg state into photons
outside the waveguide and show that all physical phenomena we predict are well
within experimental reach.
Related papers
- Correlated relaxation and emerging entanglement in arrays of $Λ$-type atoms [83.88591755871734]
We show that the atomic entanglement emerges in the course of relaxation and persists in the final steady state of the system.
Our findings open a new way to engineer dissipation-induced entanglement.
arXiv Detail & Related papers (2024-11-11T08:39:32Z) - Super- and subradiant dynamics of quantum emitters mediated by atomic
matter waves [0.0]
We explore cooperative dynamics of quantum emitters in an optical lattice that interact by radiating atomic matter waves.
We demonstrate directional super- and subradiance from a superfluid phase with tunable radiative phase lags.
We observe a coupling to collective bound states with radiation trapped at and between the emitters.
arXiv Detail & Related papers (2023-11-16T00:37:06Z) - Realization of an extremely anisotropic Heisenberg magnet in Rydberg
atom arrays [4.209816265441194]
We employ a Rydberg quantum simulator to experimentally demonstrate strongly correlated spin transport in anisotropic Heisenberg magnets.
In our approach, the motion of magnons is controlled by an induced spin-exchange interaction through Rydberg dressing.
As the most prominent signature of a giant anisotropy, we show that nearby Rydberg excitations form distinct types of magnon bound states.
arXiv Detail & Related papers (2023-07-10T04:52:52Z) - Quantum Phases from Competing Van der Waals and Dipole-Dipole
Interactions of Rydberg Atoms [0.0]
Competing short- and long-range interactions represent distinguished ingredients for the formation of complex quantum many-body phases.
We leverage the van der Waals and dipole-dipole interactions of the Rydberg atoms to obtain the zero-temperature phase diagram for a uniform chain and a dimer model.
This demonstrates the versatility of the Rydberg platform in studying physics involving short- and long-ranged interactions simultaneously.
arXiv Detail & Related papers (2023-03-30T15:45:06Z) - Bound state of distant photons in waveguide quantum electrodynamics [137.6408511310322]
Quantum correlations between distant particles remain enigmatic since the birth of quantum mechanics.
We predict a novel kind of bound quantum state in the simplest one-dimensional setup of two interacting particles in a box.
Such states could be realized in the waveguide quantum electrodynamics platform.
arXiv Detail & Related papers (2023-03-17T09:27:02Z) - Phase diagram of Rydberg-dressed atoms on two-leg triangular ladders [50.591267188664666]
We investigate the phase diagram of hard-core bosons in a triangular ladder with next-to-nearest-neighbor interaction along each leg.
For weak interactions, Abelian bosonization predicts a spin density wave and a fully gapless Luttinger liquid phase.
The competition with the zigzag interaction generates a charge density wave, a 'polarized holonic' phase, and a crystalline phase at the filling 2/5.
arXiv Detail & Related papers (2022-07-01T12:49:04Z) - Formation of robust bound states of interacting microwave photons [148.37607455646454]
One of the hallmarks of interacting systems is the formation of multi-particle bound states.
We develop a high fidelity parameterizable fSim gate that implements the periodic quantum circuit of the spin-1/2 XXZ model.
By placing microwave photons in adjacent qubit sites, we study the propagation of these excitations and observe their bound nature for up to 5 photons.
arXiv Detail & Related papers (2022-06-10T17:52:29Z) - Superglass formation in an atomic BEC with competing long-range
interactions [0.0]
We study a quantum many-body system with two competing and substantially different long-range interaction potentials.
The instability towards density order can give way to a superglass phase, i.e., a super disordered amorphous solid.
arXiv Detail & Related papers (2021-09-29T20:38:18Z) - Quantum chaos driven by long-range waveguide-mediated interactions [125.99533416395765]
We study theoretically quantum states of a pair of photons interacting with a finite periodic array of two-level atoms in a waveguide.
Our calculation reveals two-polariton eigenstates that have a highly irregular wave-function in real space.
arXiv Detail & Related papers (2020-11-24T07:06:36Z) - Non-exponential decay of a collective excitation in an atomic ensemble
coupled to a one-dimensional waveguide [0.0]
We study the dynamics of a single excitation coherently shared amongst an ensemble of atoms and coupled to a one-dimensional wave guide.
The coupling between the matter and the light field gives rise to collective phenomena such as superradiant states.
arXiv Detail & Related papers (2020-06-26T13:26:35Z) - Optically pumped spin polarization as a probe of many-body
thermalization [50.591267188664666]
We study the spin diffusion dynamics of 13C in diamond, which we dynamically polarize at room temperature via optical spin pumping of engineered color centers.
We find good thermal contact throughout the nuclear spin bath, virtually independent of the hyperfine coupling strength.
Our results open intriguing opportunities to study the onset of thermalization in a system by controlling the internal interactions within the bath.
arXiv Detail & Related papers (2020-05-01T23:16:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.