論文の概要: Depth Edge Guided CNNs for Sparse Depth Upsampling
- arxiv url: http://arxiv.org/abs/2003.10138v1
- Date: Mon, 23 Mar 2020 08:56:32 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-21 00:16:48.902521
- Title: Depth Edge Guided CNNs for Sparse Depth Upsampling
- Title(参考訳): sparse depth upsamplingのための深度エッジ誘導cnn
- Authors: Yi Guo, Ji Liu
- Abstract要約: ガイドされたスパース深度アップサンプリングは、アライメントされた高解像度カラー画像がガイダンスとして与えられるとき、不規則にサンプリングされたスパース深度マップをアップサンプリングすることを目的としている。
奥行き画像を用いたスパース・不規則深度画像から深度を復元するためのガイド付き畳み込み層を提案する。
実世界の屋内および合成屋外データセット上で,本手法を検証するための総合的な実験を行った。
- 参考スコア(独自算出の注目度): 18.659087667114274
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Guided sparse depth upsampling aims to upsample an irregularly sampled sparse
depth map when an aligned high-resolution color image is given as guidance.
Many neural networks have been designed for this task. However, they often
ignore the structural difference between the depth and the color image,
resulting in obvious artifacts such as texture copy and depth blur at the
upsampling depth. Inspired by the normalized convolution operation, we propose
a guided convolutional layer to recover dense depth from sparse and irregular
depth image with an depth edge image as guidance. Our novel guided network can
prevent the depth value from crossing the depth edge to facilitate upsampling.
We further design a convolution network based on proposed convolutional layer
to combine the advantages of different algorithms and achieve better
performance. We conduct comprehensive experiments to verify our method on
real-world indoor and synthetic outdoor datasets. Our method produces strong
results. It outperforms state-of-the-art methods on the Virtual KITTI dataset
and the Middlebury dataset. It also presents strong generalization capability
under different 3D point densities, various lighting and weather conditions.
- Abstract(参考訳): guided sparse depth upsamplingは、アラインされた高解像度カラーイメージがガイダンスとして与えられると、不規則にサンプリングされたスパース深度マップをサンプリングすることを目的としている。
このタスクのために多くのニューラルネットワークが設計されている。
しかし、深度と色画像の構造的な違いを無視することが多く、その結果、テクスチャのコピーや奥行きのぼやけなどの明らかなアーティファクトが生じる。
正規化畳み込み操作にインスパイアされたガイド状畳み込み層は,深度エッジ画像を用いたスパース・不規則深度画像から深度を復元する。
我々の新しいガイドネットワークは、深度値が深度エッジを横切るのを防止し、アップサンプリングを容易にする。
さらに,提案する畳み込み層に基づく畳み込みネットワークの設計を行い,異なるアルゴリズムの利点を活かし,よりよい性能を実現する。
本手法を実世界の屋内および合成屋外データセット上で検証するための包括的な実験を行う。
我々の方法は強い結果をもたらす。
Virtual KITTIデータセットとMiddleburyデータセットの最先端メソッドよりも優れています。
また、異なる3次元点密度、様々な照明、気象条件下で強い一般化能力を示す。
関連論文リスト
- Depth-guided Texture Diffusion for Image Semantic Segmentation [47.46257473475867]
本稿では,この課題を効果的に解決するディープスガイド型テクスチャ拡散手法を提案する。
本手法は,テクスチャ画像を作成するために,エッジやテクスチャから低レベル特徴を抽出する。
この拡張深度マップを元のRGB画像と結合した特徴埋め込みに統合することにより,深度マップと画像との相違を効果的に橋渡しする。
論文 参考訳(メタデータ) (2024-08-17T04:55:03Z) - Depth-aware Volume Attention for Texture-less Stereo Matching [67.46404479356896]
実用的な屋外シナリオにおけるテクスチャ劣化に対処する軽量なボリューム改善手法を提案する。
画像テクスチャの相対的階層を抽出し,地中深度マップによって教師される深度体積を導入する。
局所的な微細構造と文脈は、体積凝集時のあいまいさと冗長性を緩和するために強調される。
論文 参考訳(メタデータ) (2024-02-14T04:07:44Z) - RigNet++: Semantic Assisted Repetitive Image Guided Network for Depth
Completion [31.70022495622075]
画像案内ネットワークにおける繰り返し設計を探索し、徐々に十分に深度を復元する。
前者では,複雑な環境の識別画像の特徴を抽出するために,高密度繰り返し時間ガラスネットワーク(DRHN)を設計する。
後者では,動的畳み込みに基づく反復誘導(RG)モジュールを提案する。
さらに,領域認識型空間伝搬ネットワーク(RASPN)を提案する。
論文 参考訳(メタデータ) (2023-09-01T09:11:20Z) - Understanding Depth Map Progressively: Adaptive Distance Interval
Separation for Monocular 3d Object Detection [38.96129204108353]
いくつかの単分子3D検出技術は、深度推定タスクからの補助深度マップに依存している。
本稿では,深度マップの新たな視点を取り入れたAdaptive Distance Interval Separation Network (ADISN) というフレームワークを提案する。
論文 参考訳(メタデータ) (2023-06-19T13:32:53Z) - RigNet: Repetitive Image Guided Network for Depth Completion [20.66405067066299]
近年のアプローチは、高密度な結果を予測するためのイメージガイド学習に重点を置いている。
ぼやけたイメージガイダンスとオブジェクト構造は、まだイメージガイドされたフレームワークのパフォーマンスを妨げている。
画像案内ネットワークにおける反復的な設計を探索し,徐々に深度値の回復を図る。
提案手法は,NYUv2データセットの最先端化を実現し,提出時のKITTIベンチマークで1位にランクインする。
論文 参考訳(メタデータ) (2021-07-29T08:00:33Z) - Adaptive Illumination based Depth Sensing using Deep Learning [18.72398843488572]
RGB画像とスパース深度マップ計測を融合した高密度深度マップを推定する様々な手法が提案されている。
ハードウェアの最近の進歩により、適応的な深度測定が可能となり、深度マップ推定がさらに改善された。
このような適応的なサンプリングマスクは,様々なサンプリング率で多くのrgbおよびスパース深度融合アルゴリズムにうまく一般化できることを示す。
論文 参考訳(メタデータ) (2021-03-23T04:21:07Z) - SelfDeco: Self-Supervised Monocular Depth Completion in Challenging
Indoor Environments [50.761917113239996]
自己教師付き単分子深度補完のための新しいアルゴリズムを提案する。
提案手法は,深度ラベルを含まない疎深度測定とそれに対応する単眼ビデオシーケンスのみを必要とするニューラルネットワークのトレーニングに基づく。
我々の自己監督アルゴリズムは、テクスチャのない領域、光沢のない透明な表面、非ランバートの表面、動く人々、より長く多様な深度範囲、複雑なエゴモーションによって捉えられたシーンを含む屋内環境に挑戦するために設計されている。
論文 参考訳(メタデータ) (2020-11-10T08:55:07Z) - Deep 3D Capture: Geometry and Reflectance from Sparse Multi-View Images [59.906948203578544]
本稿では,任意の物体の高品質な形状と複雑な空間変化を持つBRDFを再構成する学習に基づく新しい手法を提案する。
まず、深層多視点ステレオネットワークを用いて、ビューごとの深度マップを推定する。
これらの深度マップは、異なるビューを粗く整列するために使用される。
本稿では,新しい多視点反射率推定ネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2020-03-27T21:28:54Z) - Depth Completion Using a View-constrained Deep Prior [73.21559000917554]
近年の研究では、畳み込みニューラルネットワーク(CNN)の構造が、自然画像に有利な強い先行性をもたらすことが示されている。
この前者はディープ・イメージ・先行 (DIP) と呼ばれ、画像の装飾や塗装といった逆問題において有効な正則化器である。
我々は、DIPの概念を深度画像に拡張し、色画像とノイズと不完全な目標深度マップから、CNNネットワーク構造を先行して復元された深度マップを再構成する。
論文 参考訳(メタデータ) (2020-01-21T21:56:01Z) - Single Image Depth Estimation Trained via Depth from Defocus Cues [105.67073923825842]
単一のRGB画像から深度を推定することはコンピュータビジョンの基本的な課題である。
この作業では、異なる視点ではなく、フォーカスキューからの奥行きに依存しています。
我々は,KITTIとMake3Dデータセットの教師あり手法と同等な結果を提示し,教師なし学習手法より優れていることを示す。
論文 参考訳(メタデータ) (2020-01-14T20:22:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。